Why 0! = 1 ? | Why 0 factorial is equal to 1?

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 229

  • @kc3673
    @kc3673 3 роки тому +552

    So that's reason why the factorial cannot

    • @NeptuneMood08
      @NeptuneMood08 Рік тому +33

      It can be less than 0 but can’t be an integer less than 0 because using an expression makes division by 0. But (-0.5)! ≈ 1.7725

    • @youtubeuserdan4017
      @youtubeuserdan4017 Рік тому +14

      The replies are wrong. The factorial is still not defined for numbers that aren't nonnegative integers. What Desmos and other calculators are using are probably something like (but not necessarily) the gamma function which extends the factorial to the reals.

    • @professionalcatgirl8592
      @professionalcatgirl8592 Рік тому

      @@lucaswarnke3668desmos uses the gamma function for the graph of a factorial to extend it to real numbers

    • @Deaddev1
      @Deaddev1 Рік тому +7

      ​@@NeptuneMood08I don't understand. How do you calculate (-0.5)! Pls explain

    • @Funkoh
      @Funkoh Рік тому

      ⁠​⁠@@Deaddev1there is a youtuber who explained this really well called “lines that connect” in his video “how to take the factorial of any number”.
      You should go watch it! but in a nutshell, if you try to find the factorial of a non integer, you have to make assumptions about the properties of factorials that cannot be proven to be true or false

  • @PlumbWings66768
    @PlumbWings66768 2 роки тому +316

    6!=720, if I have a pack of 6 cards, there is 720 ways to arrange them all without duplicates. 0 cards can be arranged one time, which is with 0 cards

    • @uselessguys6907
      @uselessguys6907 Рік тому +23

      Thx man I understood more becuz of u

    • @flaetsbnort
      @flaetsbnort Рік тому +15

      That makes a lot more sense for me

    • @qewela
      @qewela Рік тому +6

      then why 6! is 720 when you should count arranging with 0 cards

    • @AsterMaken
      @AsterMaken Рік тому +6

      with a full deck of cards (52), if you properly shuffle it, it is almost certain that that order of cards has never been seen in history
      the reason why being is that 52! is such a huge number that it can’t fit inside our world

    • @barry3351
      @barry3351 Рік тому +9

      I think 0 cards can't be arranged at all because they don't exist.

  • @eshitasahu
    @eshitasahu Рік тому +52

    I love it when math teachers are enthusiastic about their subjects

  • @etgha
    @etgha Рік тому +72

    This isn't actually a proof that 0! = 1. If you're defining factorials as n! = n*(n-1)! then how do you know that 1! = 1 without already assuming 0! = 1. You're assuming 0! = 1 when you state the value for 1! and then working back to show your assumption is true, which just doesn't work. 0! does equal 1, but the actual proof is more interesting

    • @RPogi
      @RPogi 9 місяців тому +4

      His computation is wrong. There's no such (n-x)=0, (n-x)>0

    • @SiddhantSingh-dd1zf
      @SiddhantSingh-dd1zf 6 місяців тому

      You are right

    • @DionysusAlS
      @DionysusAlS 24 дні тому

      0! has to be 1 in order for 1! to be 1.

    • @orphan-eater
      @orphan-eater 21 день тому

      Thats what i was thinking!

  • @mwm48
    @mwm48 Рік тому +40

    This just raises more questions.🤔

    • @doremysheep7864
      @doremysheep7864 10 місяців тому

      Unfortunately, you'll need to learn calculus to understand apparently

  • @eternalflames2005
    @eternalflames2005 11 місяців тому +1

    thank you sir!

  • @Naaz6540
    @Naaz6540 3 роки тому +30

    You cleared this confusion ...Thnx...Keep it up..n never stop making these useful videos.....

    • @AchevasTV
      @AchevasTV  2 роки тому +5

      Thank you, I will

    • @utubevideos3317
      @utubevideos3317 Рік тому +2

      @AchevasTV, your math is flawed, if you disagree answer this... In the equation that you derived..
      1! = 1*(0!)
      We don't know what 0! Is, RHS is unknown, then how can you deduce LHS is 1? It can be zero, matter of fact it can be any number!
      Until you define it as *"let 1!=1"* that's a whole different story!

    • @NewChannel-mm2zi
      @NewChannel-mm2zi Рік тому

      ​@@utubevideos3317Because the definition of a factorial is n! = n*(n-1)*(n-2)…*(n-n+1). Therefore 1! = 1 as the calculation terminates at the first term n, as n-1 < n-n+1.

    • @utubevideos3317
      @utubevideos3317 Рік тому +2

      @@NewChannel-mm2zi devil is in the details ... Definition of a factorial in simple terms is"product of all integers from 1 to n" and so you have it in your equation:
      n! = n*(n-1)*(n-2)...(n-(n-1)) and when n=2 you have it 2! = 2*1
      But for 1! You try to substitute in that equation, you never get 0 because by definition it's product of all integers upto 1 so you aren't allowed to include anything less than 1
      Now that's the reason 0! = 1 and that is by *definition* ... If you try to prove it mathematically, it's not possible because you have to invoke it's definition to arrive at the result and that's what am saying!

    • @NewChannel-mm2zi
      @NewChannel-mm2zi Рік тому

      @@utubevideos3317 There was another explanation that was better for explaining 0!=1, I don't remember by who though. It used dividing previous terms of the series, so ex. 3!=6, 2!=3!/3=2, 1!=2!/2=1, and so 0!=1!/1=1

  • @johnchang1226
    @johnchang1226 3 роки тому +57

    excellent! I always tell my students by convention (or by definition) 0! =1. Just like 1 can be divided by 1 and itself but by definition, it is not considered to be a prime number

    • @utubevideos3317
      @utubevideos3317 Рік тому +2

      His equation
      1! = 1*(0!)
      We don't know what 0! Is, RHS is unknown, then how can he deduce LHS is 1? It can be zero too!

    • @thomasburnett8926
      @thomasburnett8926 Рік тому

      I wonder whether the reason 1 is not considered prime is because it is a perfect square?

    • @udomabasiekeme
      @udomabasiekeme Рік тому

      ​@@utubevideos3317 finally! Someone who reasons beyond.

    • @RPogi
      @RPogi 9 місяців тому

      1!=1 not 0
      The teaching video is wrong

  • @nexus6187
    @nexus6187 7 місяців тому +9

    i learned that
    2² = 4
    2³ = 8
    put it in reverse ( divide from 2 starting with 8 )
    2¹ = 0
    2½ = 1.414.....
    so put same logic
    1! = 1
    2! = 2
    so,
    1/1 = 1 = 0!

    • @ace5161
      @ace5161 26 днів тому

      Wait how did you do 2½=1.414?
      Isn't √2=1.414?

    • @nexus6187
      @nexus6187 26 днів тому

      @ace5161 N raised to power of 1/2 is √n

    • @ace5161
      @ace5161 26 днів тому

      @@nexus6187 No I solved it in calculator and it gave me 1 as the answer

    • @ace5161
      @ace5161 26 днів тому

      @@nexus6187 Nvm you're wrong it's 1 not 1.414

    • @nexus6187
      @nexus6187 26 днів тому

      @ace5161 It's not 2*1/2
      Its 2^(1/2)

  • @michelpitermann5335
    @michelpitermann5335 Рік тому +38

    This explanation is wrong.
    Factorial definition: For any positive integer n, n! is defined by the product of all positive integers not greater than n. This EXCLUDES 0 and all negative numbers from the definition. The DEFINITION 0! = 1 was added mainly to simplify formulas containing 0! to avoid introducing exception for those cases. For example, the binomial coefficient defined as (n k) = n! / (n-k)! k! would need an exception in its definition for (n n) or (n 0) = n! / 0! n! if 0! was not defined. Same problem for e^x = 1 + x + x^2/2! + x^3/3!... which can be written e^x = Sum of x^i/i! for i varying from 0 to infinity (very short formula with mathematical symbols). Hence 0! had to be defined as equal to 1 for the simplicity of many formulas to avoid including exceptions when n=0. Other arguments can be used to choose 0! = 1.
    In summary 0! = 1 is a DEFINITION added to the general definition of factorial that EXCLUDES (0!). You confuse a definition with the coherence of the definition with a general property of the factorial. Mathematics is a precise field and should, according to me, taught with precision.

    • @Aquaeenaktahu
      @Aquaeenaktahu Рік тому +4

      Finally

    • @SamuraiGamer91111
      @SamuraiGamer91111 Рік тому +1

      Watch the video by Eddie Woo, he explains it better than this guy and also, yes, 0! = 1.

    • @michelpitermann5335
      @michelpitermann5335 Рік тому +3

      @@SamuraiGamer91111 His explanation is totally wrong too. 0! = 1 is a definition and not a consequence of the general definition of n! WHICH IS NOT DEFINED FOR n=0. I have already explained this above.

    • @SamuraiGamer91111
      @SamuraiGamer91111 Рік тому +1

      @@michelpitermann5335 well i didnt read the whole thing, thats what a TL;DR is for

    • @creeperindisguise0
      @creeperindisguise0 Рік тому +1

      Well this is also not a correct explanation, not even the correct definition of factorial, the mathematical definition is n!=integral e^(-x)x^(n-1)dx from 0 to inf

  • @harchan6274
    @harchan6274 3 роки тому +5

    That's amazing sir, thank you

  • @kingdedede5933
    @kingdedede5933 2 роки тому +32

    The way I like to think about it is that 0 items can only be arranged in 1 way. So 0! = 1 permutation

    • @thebushmaster0544
      @thebushmaster0544 Рік тому +6

      but how can zero items be arranged in any way

    • @kingdedede5933
      @kingdedede5933 Рік тому +15

      @@thebushmaster0544 the “arrangement” is that you have nothing.

    • @cameroncamera8548
      @cameroncamera8548 Рік тому +1

      ​@@kingdedede5933Damn bro you are smart.I was always confused about this.Thanks for clarifying it for me.

    • @JJ_TheGreat
      @JJ_TheGreat Рік тому

      It is 0 objects... Therefore, there can be AN INFINITE number of ways to arrange "NOTHING" - so this explanation is a cop-out!

  • @Arel_Kursat
    @Arel_Kursat Рік тому +2

    I always thought that the last step a factorial can go is 1. Therefore 1! can not have any value and 0! is out of the question. But this video just melted my brain lol

    • @thatguyinthatband
      @thatguyinthatband Рік тому

      If you're curious about 0! and fun patterns, check out Pascal's triangle using combinations. There's a lot of 0! coming into play to make the 1s at the edges.

  • @EchosTackyTiki
    @EchosTackyTiki Рік тому +3

    Numberphile does a video on this, which I watched recently and I'm sure this is why the algorithm deemed this should show up in my feed, and they explained it pretty much the exact same way, just slightly backwards if that makes sense. But it all makes sense.

  • @adityarathor745
    @adityarathor745 3 роки тому +27

    Sir put
    0!=0(0-1)!
    0!=0
    ✓ or ×

    • @AchevasTV
      @AchevasTV  3 роки тому +30

      Hi pal, this won't work because you will be introducing (-1)!, which will cause the entire equation to be undefined.

    • @adityarathor745
      @adityarathor745 3 роки тому +8

      @@AchevasTV
      But
      0×(any N.o)=0

    • @AchevasTV
      @AchevasTV  3 роки тому +26

      @@adityarathor745 Haha, (0)x(undefined) is actually undefined. Try press this into your calculator (0)x(1/0).

    • @adityarathor745
      @adityarathor745 3 роки тому +14

      @@AchevasTV
      Thankyou sir

    • @johnchang1226
      @johnchang1226 3 роки тому +12

      Good try! This is the way of learning mathematics, always think out of the box and always challenge yourself and others, even the idea is 'funny' or 'crazy'.

  • @alittax
    @alittax 5 місяців тому

    Thank you for this excellent explanation!

  • @ksuteaching7469
    @ksuteaching7469 3 місяці тому

    Very good explanation!!

  • @jahangirkabir2008
    @jahangirkabir2008 Місяць тому

    Good explanation ❤️

  • @harshpreetkaur9677
    @harshpreetkaur9677 3 роки тому +22

    Best teacher ever👍👍❤❤

  • @AnkitDas-we8oc
    @AnkitDas-we8oc Місяць тому +1

    My curiosity makes me come here😅

  • @Broken_girl04
    @Broken_girl04 3 роки тому +8

    Thanks sir I understand easyl

  • @ahmadmneimneh
    @ahmadmneimneh 8 місяців тому +3

    But wouldn't that mean
    0!=0((-1)!)

  • @Fartman01
    @Fartman01 9 місяців тому

    Thank u so much for making this video ❤

  • @sukhdeepkaur1384
    @sukhdeepkaur1384 3 роки тому +3

    Thanks for this sir

  • @romcha2856
    @romcha2856 3 роки тому +17

    Très clair, thanks

  • @Aimthing
    @Aimthing Рік тому +1

    In reality it comes from gamma function integral

  • @alzahalemn7322
    @alzahalemn7322 Рік тому

    Very elegant sir

  • @harina8thhawks89
    @harina8thhawks89 3 роки тому +1

    Thanks for explanation

  • @DrileArchidrile-o4l
    @DrileArchidrile-o4l 2 місяці тому

    Your a goooooood teacher. thank you so much.

  • @znhait
    @znhait 2 місяці тому

    0! = 1 is more of an axiomatic choice. You have to take it as 1; otherwise, so many different parts of mathematics fall apart. Using the integer definition, there is no way to actually calculate 0!.

  • @prabhupritambehera9680
    @prabhupritambehera9680 11 місяців тому

    Thank you sir

  • @mr.diptanshu1785
    @mr.diptanshu1785 2 роки тому +2

    Thanks

  • @RohitSingh-co6ld
    @RohitSingh-co6ld Рік тому

    That's good explanation

  • @bigsmokecat3566
    @bigsmokecat3566 Рік тому

    I think of it as the no of ways of arranging 0 things which is simply 1 hence 0! = 1

  • @bhoomi8503
    @bhoomi8503 3 роки тому +2

    Hey u are amazing. Thankx

  • @SaneleNgqatha-p1d
    @SaneleNgqatha-p1d Рік тому

    Great explanation👏, could you also explain why anything to the power of zero equal to 1

  • @rishabhsaini7779
    @rishabhsaini7779 Рік тому

    excellent Sir

  • @LarsDennert
    @LarsDennert Рік тому +1

    Thats saying that 1!=0!. If 3! = 3*2*1 then 0!= 0*(0-1)! which no matter how you look at it will be 0. Your formula, not mine. I think 0!=1 because ∅ is a singular object and {∅} number 1 is a set of one object. 0 isn't a positive integer though so cant be factored despite being the basis of natural numbers.

  • @azmainrafi6656
    @azmainrafi6656 2 роки тому

    Thank you 🙏

  • @arjayalbase4695
    @arjayalbase4695 2 роки тому +1

    Amazing😲🔥🔥🔥🔥

  • @ARJ439
    @ARJ439 Рік тому

    love you sir

  • @armaletalia3254
    @armaletalia3254 4 місяці тому +3

    Your penultimate step states:
    1! = (1)(1-1)!
    So, simplify each side by diving by 1. Multiplicative identity property states that any real number n multiplied (or divided) by 1 equals n.
    Thus,
    1! = (1-1)!
    1! = (0)!
    1! = 0!
    Therefore, your math does not prove that 0! = 1. On your last step, you just dropped the ! symbol off the 1 without a valid reason.

  • @SimonsAstronomy
    @SimonsAstronomy 4 місяці тому +1

    Cool 😂

  • @delarionancejr.6471
    @delarionancejr.6471 2 роки тому +8

    But we didn't specify what n can be. In particular, does the formula hold for negative integers n?

    • @ronthechampz9911
      @ronthechampz9911 Рік тому

      I am in year five but I can kinda understand this

    • @armaletalia3254
      @armaletalia3254 4 місяці тому

      The very definition of factorial precludes negative integers. It applies to non-negative (positive) integers.

  • @pedroheitorselvanisantana5812

    So its impossible to use 0 as n? The formula is useless in this case?

  • @NuNu_T09
    @NuNu_T09 2 роки тому +2

    Well the factorial sign means there’s 1
    Left like algebra

  • @zkblen5309
    @zkblen5309 Рік тому

    Finally, now I understood why 0! Is 1.

  • @SalmanKhan-iy3ld
    @SalmanKhan-iy3ld Рік тому

    excellent

  • @italyballcoutryballSshorts9
    @italyballcoutryballSshorts9 7 місяців тому

    2>1 or 2

  • @oluwaseyisubair4426
    @oluwaseyisubair4426 Рік тому +1

    1! = 0 !
    1 = 1

  • @mueenofficial8965
    @mueenofficial8965 Рік тому

    thanks from Bangladesh ❣️🥰

  • @doinnothing7818
    @doinnothing7818 Рік тому

    will it work in c++?

  • @AhsanRafi-nk8lo
    @AhsanRafi-nk8lo 11 місяців тому

    I have a question. Why do we change 1 factorial to just 1 in the last line?

    • @armaletalia3254
      @armaletalia3254 4 місяці тому

      Because his mathematical reasoning is bogus and wrong.

  • @wannurnasuha3168
    @wannurnasuha3168 11 місяців тому +1

    WRONG PROOF!! You make all mathematicians trigger..😂😂😂

  • @mistermisterrigby3028
    @mistermisterrigby3028 8 місяців тому +1

    But what if n was 0…..

    • @armaletalia3254
      @armaletalia3254 4 місяці тому

      Factorial only applies to non-negative (positive) integers. It does not apply to all real numbers (including decimals or negatives). And it does not apply to negative integers.

  • @cmilkau
    @cmilkau Рік тому

    Empty product must be the neutral element.

  • @ghostionetor
    @ghostionetor 10 місяців тому

    This is where the universe came from

  • @devanshkaushal1586
    @devanshkaushal1586 Рік тому +1

    So thats why we take the 0! as 1
    Dayum

  • @hallinden3942
    @hallinden3942 4 місяці тому

    Invalid argument; the generalized case should be n(n-1)! where n is not equal 0. To prove this plug 0 in for n and then 'do the math'. 0! should be undefined.

  • @utubevideos3317
    @utubevideos3317 Рік тому +1

    Flaw, you don't assume LHS without getting rhs

  • @RahulSingh-iu9px
    @RahulSingh-iu9px 2 роки тому

    Thanks sir
    This is my doubt .

  • @mmgreen31
    @mmgreen31 4 дні тому

    3! = 3 x 2 x 1, write out 0! In the same way. You can’t. You can’t get to n! = n(n-1)! using 0 as the starting point.
    The rule of factorial is that you multiple whole numbers descending to or including 1. So 1! is 1x1. 0! violates the rules of the operation. Also how can any multiplicative function including 0 as a factor ever be >0?
    Finally using the equation of n!= n(n-1)! , if one uses -3 as n then is it true that -3! = -3(-3-1)! … -3! = -3(-4)! …-3 = 12?! No, -3! Is an imaginary number. And so should 0! be seen as well.

  • @ILikeSkulls666
    @ILikeSkulls666 8 місяців тому

    Still looking for the practical application in reality tho

  • @hamzaemad8338
    @hamzaemad8338 Рік тому

    Nice

  • @JJ_TheGreat
    @JJ_TheGreat Рік тому

    Wow! This is the best expansion from a pure mathematical standpoint of why 0! is 1...
    However, I still think it makes no sense from a practical standpoint.

  • @ransom.52
    @ransom.52 9 місяців тому

    It takes Nothing, to be 1 with itself. Everybody else has to ask who came before…

  • @sumitrajpoot2713
    @sumitrajpoot2713 2 роки тому

    great🧠

  • @officialnoria
    @officialnoria Рік тому

    For n greater than 0

  • @ChandrabkPkr
    @ChandrabkPkr Рік тому

    This became theoretical proof what about the experimental or practical proof? 😅

  • @KOl-xj4jt
    @KOl-xj4jt Рік тому

    1=1 golden rule perfect balance

  • @jacobstarr9010
    @jacobstarr9010 7 місяців тому

    There is one way to arrange zero objects

  • @SeptillionSeven
    @SeptillionSeven Місяць тому

    dang okay
    i see how it is

  • @akmithasethumjith3047
    @akmithasethumjith3047 Рік тому

    super

  • @crazysoul6987
    @crazysoul6987 2 роки тому

    0⁰=1 ?? How??

  • @ניין-י9ש
    @ניין-י9ש 2 роки тому +1

    But then what is 1! ?
    If 1!= 1×0!
    Then 1! Doesn't have any definite value in this sense as you equate 1! as 1 somehow.. how do you know that 1! Is 1?

    • @2070user
      @2070user 2 роки тому

      by definition of n! = n(n-1)(n-2)...(3)(2)(1)
      we can then find any factorial of any positive integer, except we don't know what happens if n=0, thus we need to find a pattern as shown in the short

  • @spidowolf6481
    @spidowolf6481 Рік тому

    If 1 = 0!, can 10 = 9! as well? Or 2 = 1! 😅?

  • @bobh6728
    @bobh6728 17 днів тому

    So 0!=0(-1)!, therefore -1! can be anything.

  • @NumberNinjaDave
    @NumberNinjaDave 4 місяці тому

    This isn’t a fully accurate proof but rather a trick to show how you can manipulate a formula. It’s using the definition you’re trying to prove in the same expression
    Remember that factorials come from combinatorics, and for nCr, your explanation breaks because it allows division by 0, which is undefined
    This means that 0! Is conventionally defined then as 1, but why?
    From set theory, think of 0! as all the ways I can choose something (or nothing) from an empty set. The answer is 1.

  • @healthline3x567
    @healthline3x567 Рік тому

    Love from india🇮🇳🇮🇳🇮🇳

  • @presauced
    @presauced 7 місяців тому

    faktowia

  • @IsThisBrilliant
    @IsThisBrilliant 6 місяців тому

    I think 0 factorial is not even possible as when we are finding factorials we just find the multiplication of all the natural numbers till the number for positive integers and all negative integers starting from -1 till the number. So 0 is never in the list.
    No matter which method we choose 0 is not fitting in any one of them.
    And also he took formula wrong during 1! As actual formula is
    n!=n[(n-1)!] not n!=n(n-1)!

  • @DageLV
    @DageLV Рік тому

    0!=1 returns true cause != checks for "is not" lol XD

  • @hankesker912
    @hankesker912 Рік тому

    This isn’t a proof this is just a list of true statements.

  • @bubgaming3306
    @bubgaming3306 2 роки тому +1

    So -1!=0?

    • @AchevasTV
      @AchevasTV  2 роки тому

      No you can't. You cannot perform factorial to a negative number.

    • @LargeDivisor
      @LargeDivisor 2 роки тому +1

      @@AchevasTVIt seems arbitrary to say that you can’t perform factorial on negative numbers. Why not declare factorial invalid for any non-positive number, and so make 0! undefined? Is there a mathematical reason for this?

    • @leonfeltham6458
      @leonfeltham6458 2 роки тому

      If you actually plug n=0 into the formula, you will get 0! = 0(-1)! , Then since 0! = 1, 1 = 0 x (-1)! , So (-1)! = 1/0 which we know to be undefined, therefore (-1)! is also undefined

    • @Cyrenalux
      @Cyrenalux Рік тому

      ​@@LargeDivisor Sorry for being 10 months late, but you should look up the pi function. Really mindblowing stuff

  • @Akbar_Rajabboyev
    @Akbar_Rajabboyev Рік тому +1

    0!=0×(0-1)!
    0!=0😂

    • @Ostup_Burtik
      @Ostup_Burtik 11 місяців тому

      0!=1😂😂😂😂😂😂😂😂😂
      Noob in math😂😂😂😂😂😂😂😂😂

  • @damontayy1272
    @damontayy1272 Рік тому

    don't let bro cook

  • @ze-prestooo
    @ze-prestooo 2 роки тому

    You wrote,
    1!=1(1-1)!
    And then,
    1=0!
    Doesn't that mean 3=3(2!) Which should be false?
    Sorry, I'm clueless.

    • @clover-00
      @clover-00 Рік тому

      how can it be false??
      here 1! = 1
      so
      1! = 1(1-1)!
      by putting 1!=1 equation becomes
      1 = 1(1-1)!
      1 = 1(0)!
      1/1 = 0!
      0!= 1

    • @ze-prestooo
      @ze-prestooo Рік тому

      @@clover-00
      That means,
      3! = 6(3-3)!
      6 = 6(0)!
      0! = 6/6
      0! = 1
      Yeah, seems like it. But how could 0! equal to 1? Is there an explanation for it in real life? Cuz it could be a math error. I'm not a professional so I want to learn why it turned out to be.

    • @ze-prestooo
      @ze-prestooo Рік тому

      @@clover-00
      I've been wondering about this for a while now but why do we put 0 or anything that represents it in equations when we haven't figured out yet what anything divided by 0 is equal to?
      I mean, 0 represents nothing. But you can still take nothing from nothing.

  • @undine8750
    @undine8750 Рік тому

    I read this as 0 ≠ 1

  • @jiteshkumar4215
    @jiteshkumar4215 3 роки тому +1

    Eddie woo concept was better

  • @d3m0n_271
    @d3m0n_271 Рік тому

    So 0! = 0*(-1)!

  • @thomasburnett8926
    @thomasburnett8926 Рік тому

    So 0! = 1 to let 1! work, but 0! is not equal to 0(-1)!.

    • @Aulkk
      @Aulkk Рік тому

      0!=1!/1😂😂
      0! is final step,
      Turn up to prove it 👆
      👌👌🤭😅

  • @zanti4132
    @zanti4132 Рік тому +6

    Proof that 0 = 1:
    0! = 1 and 1! = 1, therefore 0! = 1! Divide both sides by !, giving 0 = 1, q.e.d.
    Just kidding. Don't delete me.

  • @dangthanhlay
    @dangthanhlay 11 місяців тому

    At least 69! > 52!

  • @samimoksri7943
    @samimoksri7943 Рік тому

  • @JRCSalter
    @JRCSalter 2 роки тому +3

    I still don't understand it.
    1! = (1) * (1-1)! is then:
    1! = (1) * (0)!, and removing the brackets, we have:
    1! = 1 * 0!.
    Anything multiplied by zero is zero. So shouldn't both 1! and 0! be zero? Unless, by convention we accept that 0! = 1, in which case the equation becomes 1! = 1 * 1. But that doesn't explain why 0! = 1.
    This video seemed to gloss over the idea that (1)(1-1)! = 0!, and that is the part I'm struggling with. I just don't understand how that equation makes anything but zero.

    • @mischievous_luffy
      @mischievous_luffy Рік тому

      That's 0! and not 0; so you cannot say that 1 × (0)! = (1 × 0)! ❌
      Take 0! as a variable and solve for 0! ✅

    • @JRCSalter
      @JRCSalter Рік тому

      @@mischievous_luffy Sorry, I still don't understand it. You are saying to solve for 0! But that's the problem I'm having. How does dividing by 0! equal anything other than zero?

    • @mischievous_luffy
      @mischievous_luffy Рік тому

      @@JRCSalter let 0! = some constant (say 'x')
      Now initially we had the equation,
      1! = 1 × 0!
      Replace 0! by 'x'
      1! = 1 × x
      1 = 1 × x [since 1! = 1]
      We get x = 1
      Now we initially stated that 0! = x
      Replace 'x' by 0!
      You get 0! = 1

    • @JRCSalter
      @JRCSalter Рік тому

      ​@@mischievous_luffy The trouble I'm having is that I don't understand how we got from (1)(1-1)! to 0!. We are essentially saying that 1 * 0! = 0! = 1. 0 doesn't have anything to multiply itself with, and therefore would equal 0.

    • @JRCSalter
      @JRCSalter Рік тому

      @@mischievous_luffy I think I understand your reasoning, but it doesn't help explain why 0! = 1. It just seems like we use it as a synonym for 1, rather than as a calculation.
      With all other factorials, we take the number, and multiply by the next lowest positive number and so on. So we should take 0, and multiply by the next lowest positive number, but there isn't one, so it would be 0*0=0
      That logic to me makes much more sense than what was described in the video.

  • @831Billy
    @831Billy 7 місяців тому

    Cool

  • @axinal2855
    @axinal2855 2 роки тому

    For the last part, you said that 1(1-1)!=0! So you after the parentheses it’s 1x0! 0!=1, so 1x0!= 1. Do you make the equation more like 1(0)! ? So in 1(0)! Do you multiply the 1 and 0 first, or find the factorial of “0” first?

  • @retatarraf2036
    @retatarraf2036 Рік тому

    💖

  • @1973yogesh
    @1973yogesh 6 місяців тому

    🙏👍

  • @weenaugrad
    @weenaugrad Рік тому

    great! now is (-1)! equal to (-1)*(-2)! ? I guess it isn’t