Fourier Transform of sgn(t) & u(t) [Important Shortcut]

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 15

  • @eduardosiqueirabonfim98
    @eduardosiqueirabonfim98 3 роки тому +3

    wow, thats amazing! Watching from brazil, thanks!

  • @dibysahu89
    @dibysahu89 7 років тому +12

    Sir please post many more lecturer of MATLAB

  • @jakka1729
    @jakka1729 4 роки тому +9

    What is the reason behind considering DC Value

    • @leoking7713
      @leoking7713 2 роки тому +1

      Ao/2 from video 35, average value of continuous-time signals

  • @harshpreetsingh1228
    @harshpreetsingh1228 3 роки тому

    Great explanation

  • @ankushmondal1821
    @ankushmondal1821 10 днів тому

    Can someone plz explain how to calculate the avg value?

  • @karanrawat74
    @karanrawat74 6 років тому +4

    Sir what is the dc value , only last part I didn't get that

    • @lystfiskerlars
      @lystfiskerlars 5 років тому +3

      It seems to be the mean value. dc refers to the non-fluctuating part (as opposed to ac which has a frequency dependence), terms come from direct current and alternating current.

  • @naamanmwela7219
    @naamanmwela7219 Рік тому

    can i use this method to find FT of other functions

  • @anjalimamidala4649
    @anjalimamidala4649 9 місяців тому

    Why are you considering average value?

  • @swayampattanaik1522
    @swayampattanaik1522 Рік тому +1

    anyone noticed, instructor's voice is different than rest of the videos?

  • @iitgradtutor7692
    @iitgradtutor7692 6 років тому +3

    Assuming f(t) = sgn(t), the Fourier transform of f'(t) is not equal to jw.F(w) as the other term of [-infinity to +infinity integration f'(t)e^(-jwt)] does not vanish. Please throw some light on this.

    • @_xxx_mlg_pingu_xxx_1725
      @_xxx_mlg_pingu_xxx_1725 2 роки тому

      Pretty sure that would just be the +c from the integration, which would be the average value of x(t), I might be wrong

  • @awesomearchit111
    @awesomearchit111 7 років тому

    Sir the link is not in description

  • @kuk3927
    @kuk3927 6 років тому

    Best explanation I.have ever seen