Every group of prime order is cyclic | composite order group has at least one trivial subgroup

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 16

  • @N.R.S.Viewpoint1025
    @N.R.S.Viewpoint1025 Рік тому +1

    Excellent explanation 🔥 gazab ❤🔥

  • @HarishKumar-gy7ot
    @HarishKumar-gy7ot 2 роки тому

    Better than any other UA-cam videos on group theory

  • @Rahul.G.Paikaray27
    @Rahul.G.Paikaray27 Рік тому +1

    🙏🙏🙏
    Mam in last theorem, In 23:09
    a=(a^2)^m for some integer
    Then o(a) is less than 2m-1
    But if m is negative integer then order of a is also negative then how it's possible because order is always positive

  • @lakshmeeshhegde7389
    @lakshmeeshhegde7389 2 роки тому

    3:04 Mam here you told that H is a sub set of G , but you previously considered just a set H and not all elements of H may or may not belong to G because you considered G as atleast have one element a other than e but it doesn't tells anything about existence of any of a^n in G . Or am I missing something here..

  • @ankitkherimasania2987
    @ankitkherimasania2987 2 роки тому

    Mam non trivial kya hota hai

  • @Rahul.G.Paikaray27
    @Rahul.G.Paikaray27 Рік тому

    💯💯💯

  • @zubairsmathtutorials4542
    @zubairsmathtutorials4542 2 роки тому

    Mam o(H) < o(G)
    Then H toh Identity group b ho sakhta hai na

  • @Rahul.G.Paikaray27
    @Rahul.G.Paikaray27 Рік тому

    🌟🌟🌟🌟

  • @Rahul.G.Paikaray27
    @Rahul.G.Paikaray27 Рік тому +1

    Namaste Mam 🙏
    Which book you refer for all proofs in group theory & linear algebra

    • @RavinaTutorial
      @RavinaTutorial  Рік тому

      Here I have used jeevanson, but you can use Krishna publication.