Square Root Math Olympiad Question

Поділитися
Вставка
  • Опубліковано 4 січ 2025

КОМЕНТАРІ • 7

  • @DestinedEmporium
    @DestinedEmporium  20 днів тому +1

    If you enjoyed this video, be sure to check out our How To Solve Lambert W Function: ua-cam.com/video/5OoSBlqP0Z4/v-deo.html

  • @hamdanmalani9501
    @hamdanmalani9501 18 днів тому +1

    there will be 3 solutions right, 1 w and w^2

  • @Chris-5318
    @Chris-5318 7 днів тому

    You could have saved a lot of time by squaring both sides twice (i.e. raising to the fourth power).

  • @プリタム
    @プリタム 19 днів тому +2

    There should be 3 solutions right? By using De moivre's theorem we can find the roots of unity and have complex solutions and thus more solutions for X.

    • @JUGNU.C.MEHROTRANEETASPIRANT
      @JUGNU.C.MEHROTRANEETASPIRANT 18 днів тому

      *_Absolutely_* ! 😁
      We can say that *u^3* = 1 _Or_ => *(u^3)-1=0* Or =>(u - 1).(u^2+u+1)=0 , i.e. ,=> OF => *u* = 1 Or => *u{by quadratic formula} =[ -1± i√(3) ]/2* *Or* => *u ∈ {1,(w),(w^2)} , Where : (w) , (w^2) = imaginary Square roots of unity.(Complex-Conjugates of each other)
      Also , since *u= lg(x)* {Base 10 assumed} => Either x = 10 Or => x = antilog([ -1± i√3 ]/2])= 10^([ -1± i√3 ]/2])
      ∴ *x ∈ { 10, 10^(w) , 10^(w^2) }* *(Ans.)* [Where : (w),(w^2) = imaginary Square roots of unity.(Complex conjugates of each other)]

    • @JUGNU.C.MEHROTRANEETASPIRANT
      @JUGNU.C.MEHROTRANEETASPIRANT 18 днів тому

      Note that I edited , to replace (+/-) with ± , & "Belongs-to" with ∈

  • @Ahmed-kg2gf
    @Ahmed-kg2gf 18 днів тому

    Log(x)=y ,y should be a strictly positive number to even talk Abt solving this , keep this in mind
    √(y√y) =1 square both sides
    y√y =1 square again
    y³=1 , one real solutions , 2 complex ones
    , the only solution strictly positive is y=1
    Thus logx=1
    This x=10