Solving This Equation In Seconds With One Trick | Baltic Way 1992

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 35

  • @allykid4720
    @allykid4720 2 роки тому +18

    2^x (4 - x) = 2x + 4
    Dividing both sides by 2 gives:
    2^(x - 1)×(4 - x) = x + 2
    Note that x cannot be odd except 1 (and 1 is a solution), now we put x = 2k and cancel by 2:
    2^(2k - 1)×(2 - k) = k + 1, so: (k + 1)/(2 - k) > 0, which gives the boundaries: -1 < k

    • @kidamaroo
      @kidamaroo 2 роки тому +2

      Your answer is way more straightforward than the video

  • @vitalsbat2310
    @vitalsbat2310 2 роки тому +21

    Question: is there any way for us to know what the question's quickest way to do for number theory questions? sometimes checking positivity is fine, but sometimes it requires mod to do so. And about how long do you need to take for you to think of an elegant solution? thanks

    • @aviraljain465
      @aviraljain465 2 роки тому +2

      After solving ample problems you can find that you can mix different methods and come with your own. Like in chess some moves can be rejected just by intuition.

    • @jmcargal
      @jmcargal 2 роки тому

      No.

    • @ignaciobenjamingarridoboba2071
      @ignaciobenjamingarridoboba2071 2 роки тому

      There is only one way: develop your profilaxis in maths

  • @Mutual_Information
    @Mutual_Information 2 роки тому +8

    0 and 1 are always good first solutions to check.

  • @thetheoreticalnerd7662
    @thetheoreticalnerd7662 2 роки тому +2

    I divided both sies by 4 - x and simplified the RHS to -2 - 12/(x - 4), which has to be an positive integer. Its easy to narrow down cases from there.

  • @amitsrivastava1934
    @amitsrivastava1934 2 роки тому +3

    This one is a beauty. Simple but interesting.

  • @LeopoldoGhielmetti
    @LeopoldoGhielmetti 2 роки тому +1

    X can't be negative because the left part will be fractionary and the left part integer. So X is always positive, no need to test the value -1

  • @sh0ejin
    @sh0ejin 2 роки тому +4

    of the 5 cases you can eliminate more by simply looking at original equation mod 2

    • @rentib9136
      @rentib9136 2 роки тому +1

      you have problems when x < 0, because 2^x is not invertible modulo 2

  • @זאבגלברד
    @זאבגלברד 2 роки тому

    The function f(x)=(2x+4)/( -x +4) is a mooved hyperbulla y=k/x so it is very simple to draw it [y=-2 horizontal ... x=4 vertical ...] Now we have only x=-1 , x=0 , x=1 , x=2 , x=3 as possibilities.

  • @yusufdenli9363
    @yusufdenli9363 2 роки тому +2

    Is there any solution if x is not an integer?

  • @gdtargetvn2418
    @gdtargetvn2418 2 роки тому +1

    You can also do the following.
    (2^x)(4 - x) = 2x + 4
    Since x is integer => 4 - x | 2x + 4
    => 4 - x | -2x - 4
    => 4 - x | 2(4 - x) - 12
    => 4 - x | 12
    Or 4 - x = 1, 2, 3, 4, 6, 12.
    => x = 3, 2, 1, 0, -10, -16.
    Recheck:
    x = 3 => 8(1) = 10 (false)
    x = 2 => 4(2) = 8 (true)
    x = 1 => 2(3) = 6 (true)
    x = 0 => 1(4) = 4 (true)
    x = -10, -16 => LHS is not integer.
    In conclusion: x = 2, 1, 0.

    • @spiderjerusalem4009
      @spiderjerusalem4009 2 роки тому

      2^x = (2x-8+12)/(4-x)
      = -2 + 12/(4-x)
      indubitably, 4-x>0,
      by that, you could limit the choices into only 3

    • @nicklarry7791
      @nicklarry7791 Рік тому

      This only works for non-negative integers. Otherwise, 2^x is not an integer, which you're assuming.

    • @gdtargetvn2418
      @gdtargetvn2418 Рік тому

      @@nicklarry7791 x is *never* smaller than 0, otherwise the LHS becomes a fraction, while the RHS is an integer

    • @nicklarry7791
      @nicklarry7791 Рік тому

      @@gdtargetvn2418 That also needs to be proven. What if the fraction resolves to an integer?

    • @gdtargetvn2418
      @gdtargetvn2418 Рік тому

      @@nicklarry7791 Ah, right. This.
      A possible solution may be to set x = -y, then y > 0
      RHS changes very little, but LHS has a big change: 2^(-y)(4+y)
      Rewritten it as (4 + y)/(2^y), and since RHS is an integer, LHS must be an integer as well, so we're back to finding y satisfying 2^y | (4 + y) for positive integers y

  • @BritishBloke66
    @BritishBloke66 2 роки тому

    Solide!

  • @crazycat1503
    @crazycat1503 2 роки тому +1

    Seconds. Also this video: 5 minutes

  • @tontonbeber4555
    @tontonbeber4555 2 роки тому +1

    Yes ... too easy :))

  • @tianqilong8366
    @tianqilong8366 2 роки тому +1

    easiest question this month :)

  • @SuperYoonHo
    @SuperYoonHo 2 роки тому

    nice

  • @arinrohria5735
    @arinrohria5735 2 роки тому +1

    U can also solve it using graphs
    2 to the power of x and 2x+4/4-x
    Now the points where they intersect those are the solutions

  • @U9191-e6s
    @U9191-e6s 2 роки тому

    yay i did it

  • @lusine8292
    @lusine8292 2 роки тому

    can someone help me with this one:
    find the largest value of natural number n such that 8^100!-1 is divisible by 7^n

    • @jölwritesmusic
      @jölwritesmusic 2 роки тому

      Factor 8^(100!)-1. You get one factor of 7 and the you just need to look what happens in the other term.

    • @lusine8292
      @lusine8292 2 роки тому

      @@jölwritesmusic do you have any ways to factor that large number bc i cant think of any

  • @elevedesfb
    @elevedesfb 2 роки тому

    This problem is not worth a video

  • @themieljadida4459
    @themieljadida4459 2 роки тому

    So poor!

  • @screamman2723
    @screamman2723 2 роки тому

    brilliant way