Einstein's proof of Pythagoras theorem

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 16

  • @saenzmath
    @saenzmath Рік тому +2

    Very good visual way of explaining.Thank you for sharing

    • @graphicmaths7677
      @graphicmaths7677  Рік тому +1

      Thanks!

    • @leif1075
      @leif1075 10 місяців тому

      ​@@graphicmaths7677How is it known for sure Einstein came upmwotjbthis and not someone else? Is there written proof or something? Thanka for sharing

  • @wasgehtsiedasan8660
    @wasgehtsiedasan8660 6 місяців тому +3

    I don't get how you get from C=A+B to c^2=a^2+b^2.

    • @bilaalahmed8923
      @bilaalahmed8923 6 місяців тому

      he said C= c^2, A=a^2 and B=b^2 in the first place, assigning them to respective places results a^2+b^2=c^2

    • @BuleriaChk
      @BuleriaChk 5 місяців тому

      Neither does he. (Binomial Expansion for the case n=2) And thus proof of Fermat's Last Theorem for n > 1.

  • @jakobthomsen1595
    @jakobthomsen1595 Рік тому

    Very nice!

  • @BuleriaChk
    @BuleriaChk 7 місяців тому

    c=a+b
    c^2 = (a+b)^2 = [a^2 + b^2] + [2ab] (binomial expansion)
    c^2 a^2+b^2
    The "proof" in the video is only valid in the imagination.
    (Pythagoras was also confused).

    • @nguyenn7729
      @nguyenn7729 7 місяців тому +1

      You are confusing capital C = A + B with lowercase c = a + b. Clearly someone else besides Pythagoras is confused

    • @BuleriaChk
      @BuleriaChk 7 місяців тому

      What does capital C have to do with it?
      C = A + B
      C^2 = (A+B)^2 = [A^2 + B^2] + [2AB]
      C^2 [A^2 + B^2]
      C = A + iB
      C* = A - iB
      CC* = A^2 + B^2 only in the imagination.
      Note that
      A = 4. B=5
      CC* = 25 49
      49 = 7 ^2 = [49] = [25] + [24] = [CC*]+ 24

    • @nguyenn7729
      @nguyenn7729 7 місяців тому +1

      The Pythagorean theorem, a^2 +b^2 = c^2 refer to side length lower case a,b,c of a right triangle. Capital A,B,C in this context refer to the areas of squares with side lengths a,b,c respectively. The areas of such squares are clearly a^2, b^2, and c^2 respectively. Hence it suffices to prove capital A + B = C.

    • @nguyenn7729
      @nguyenn7729 7 місяців тому +1

      And you dont even understand imaginary numbers. If c = a + ib is a complex number, what you have described is the norm of c not c^2. c^2 = c*c in the normal understanding of powers.

    • @BuleriaChk
      @BuleriaChk 7 місяців тому

      @@nguyenn7729 The hypotenuse of the right triangle is sqr(cc*) (i.e., 5)

  • @BtMeszinet
    @BtMeszinet 2 місяці тому

    I can not see the PROOF in this video.