Fixed and random effects with Tom Reader

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 57

  • @misterabuse
    @misterabuse 3 роки тому +46

    I love you Tom, you managed to explain this incredibly important point to me in such an eloquent manner that I finally understand its significance!

  • @DoctorNahanni
    @DoctorNahanni 9 місяців тому +2

    This was fabulous! I really enjoy your style of presenting. It is clear, challenging, and well-crafted.

  • @seanleeduncan
    @seanleeduncan 3 роки тому +2

    No! We need the mixed effect model video. This is the clearest explanation I've heard.

  • @zelim9863
    @zelim9863 2 роки тому +2

    Excellent explanation of effects in statistical models! Huge thanks Tom, you are the best!

  • @ElNick09
    @ElNick09 3 роки тому +4

    This is brilliantly done. Wonderful presentation!

  • @THIAGOVIZINE
    @THIAGOVIZINE 4 роки тому +14

    Great Video! Please upload the Mixed Effects one

  • @lawrnc
    @lawrnc 2 роки тому +2

    Great explanation! I find interesting that in this explanation it may be implied that random effects models (aka multilevel or mixed effects models) may be favoured to fixed effect ones, which instead through a lot of information away. Some researchers especially in econometrics instead would make the distinction between FE and RE models (rather than random and fixed effects) and favour fixed effects

    • @alekseiknorre7313
      @alekseiknorre7313 4 місяці тому

      From the econometrics viewpoint, the main issue and reason of unpopularity of RE in the discipline is a very strong assumption of zero covariance between individual- and group-level variables. Highly unrealistic in the wild, highly important for consistency of the estimator.

  • @abdulbouraa4529
    @abdulbouraa4529 3 роки тому +1

    Hi, I'm From Comoros. Thanks for the video, it was crystal clear !!!

  • @johnorosz7477
    @johnorosz7477 2 роки тому +1

    Good data allows organizations to establish baselines, benchmarks, and goals to keep moving forward. Because data allows you to measure, you will be able to establish baselines, find benchmarks and set performance goals. A baseline is what a certain area looks like before a particular solution is implemented.

  • @riesenpurzel
    @riesenpurzel 3 роки тому +4

    sad truth is that I did mixed models once for a publication and one of the reviewers said the statistics section is hard to understand and not common, so i should use anova instead... cheers to the standards of nowadays science
    edit: After submitting to a journal in another field where I knew from a colleague that the standards in statistics are a little higher, I had no problems anymore.

    • @haeyoungkim5093
      @haeyoungkim5093 Рік тому

      Its a major limitation of the peer review process...

  • @djjoeyb2873
    @djjoeyb2873 Рік тому +1

    Big up the top g Tom, shelling stats like it's Mario Kart. GG

  • @MannISNOR
    @MannISNOR 4 роки тому +4

    This is really well done! Great job Tom Reader!

  • @zolper1189
    @zolper1189 Рік тому

    Thank you for the explanation, this video was very easy to understand!

  • @NERMIENKH
    @NERMIENKH 10 місяців тому

    Thank you so much for simplyfing such topic.

  • @margaridacabral3502
    @margaridacabral3502 4 роки тому +5

    Amazing explanation! I wonder if the video about mixed models is already out? I could not find it under the youtube page of Univ. of Nottingham...

    • @uniofnottingham
      @uniofnottingham  4 роки тому

      We found these other videos with Tom Reader ua-cam.com/video/z45LUip6RcI/v-deo.html and ua-cam.com/video/PyNzbDbjs1Y/v-deo.html if they help at all.

  • @karakesteven6617
    @karakesteven6617 4 роки тому +3

    Hello!! can one use a fixed effect regression on a cross-sectional dataset, if yes how?

  • @_Randa_
    @_Randa_ Рік тому

    Such a clear explanation! Very helpful.

  • @colinwood2032
    @colinwood2032 19 днів тому

    Of all the examples to choose from, you choose one that made you overload the word "model"

  • @tarikutesfaye447
    @tarikutesfaye447 5 місяців тому

    I loved the video. Thank you Tom!

  • @esthertaheri2280
    @esthertaheri2280 Рік тому

    Hope there was a link to the next video for the mixed model

  • @durgasthan
    @durgasthan 3 роки тому

    That is why we have many independent variables to capture the random effect.. but what i was expecting how these fixed vs random effecting impacting the model.. where we already tried using many independent variables

  • @radelgrumpf
    @radelgrumpf 4 роки тому +1

    Extremely good video, Mr. Reader. Thank you so much.

  • @AmIsupposedToBeAlone
    @AmIsupposedToBeAlone 2 роки тому +1

    Really clear explanation! Thank you!

  • @chandlerw88
    @chandlerw88 2 роки тому

    Thanks Tom. Great explanation

  • @wiltonpt1
    @wiltonpt1 2 роки тому

    Great Lectures. Many thanks. Is there a sequel into explaining more about Mixed models

  • @mohammadkashem3375
    @mohammadkashem3375 Рік тому

    Hi Sir, if Hausman test indicates that fixed model is more appropriate than random effect model, and if in that case, in data time period (T) > cross section units (N), which FEM is to be chosen: time (T) FEM or Cross section (N) FEM?

  • @rameshwariar673
    @rameshwariar673 2 роки тому

    Thank you for this clear explanation!

  • @anamikabhowmick6322
    @anamikabhowmick6322 3 роки тому

    Such a great explanation and I finally understood this importing thing

  • @rumeeranisavapandit1965
    @rumeeranisavapandit1965 3 роки тому +1

    Sir, please give the lectures in written form also

  • @avishkaravishkar1451
    @avishkaravishkar1451 3 роки тому

    Excellent video and crystal clear explanation

  • @riabhabu764
    @riabhabu764 Рік тому

    Hey! thank you so much for this explanation it was truly helpful. I was wondering if you could answer a question I had about the topic. What if you wrongly assume a factor to be of random effect how would that affect your results if at all?

  • @WanyShamsuddin
    @WanyShamsuddin 2 роки тому

    Very clear explanation . Thankyou !

  • @ollie-d
    @ollie-d 2 роки тому +1

    Very clearly explained, cheers

  • @stanislaviakhno2328
    @stanislaviakhno2328 4 роки тому +2

    Great video! Well explained, thank you. I wonder if at 6:00 it is going about the random effects and not bias measurement? Thanks!

  • @afraidofmoths6547
    @afraidofmoths6547 2 роки тому

    What an awesome video! Thank you!

  • @md.masumbillah8222
    @md.masumbillah8222 2 роки тому

    great presentation!

  • @molloarden8938
    @molloarden8938 4 роки тому

    Superb , lucid presentation on an all too often neglected topic in stats.

  • @Y45HV1N
    @Y45HV1N Рік тому

    can "nurse" be treated as a random effects if there are only 2 nurses?

  • @VictorOrdu
    @VictorOrdu 2 роки тому

    Great theoretical background

  • @sofiaalfonso9883
    @sofiaalfonso9883 3 роки тому

    What an excelent video, thank you very much

  • @jacobalbright8717
    @jacobalbright8717 2 роки тому

    Fantastic! Thank you!

  • @timokvamme
    @timokvamme Рік тому

    very well explained

  • @dywu12
    @dywu12 3 роки тому

    Thx Tom, great explaination :) and well pronounced btw!

  • @BlowAway11
    @BlowAway11 3 роки тому

    That was very clear. Thanks a lot!

  • @ThuHuongHaThi
    @ThuHuongHaThi 3 роки тому

    Thank you very much, sir

  • @crazychocgingerbread7099
    @crazychocgingerbread7099 3 роки тому

    Thank you so much!

  • @Mohammadi2200
    @Mohammadi2200 2 роки тому

    very good

  • @chrislloyd5415
    @chrislloyd5415 Рік тому

    You talk about dependence within individuals. Why can you not include a dummy variable for each individual and, if desired, an interaction of this dummy variable with the covariate? This is a FE model. What is the value in pretending that the individual parameters follow a normal distribution (when they might not)?

    • @BluePenguin1812
      @BluePenguin1812 7 місяців тому

      Hi Chris, the approach you describe only works if "sphericity" is satisfied, for which you need equal variation on the dependent variable for each cluster (each individual in this case). While Mauchly's test tries to identify whether sphericity is violated, a mixed model assigning a random effect to the clustering variable avoids this requirement

  • @muveEH1988
    @muveEH1988 Рік тому

    Firstly, i would like to thanks for you interesting study, my data have two land uses(exclosure and non exclosure) with three site in each land use how to arrange my data and make analysis using liner mixed effect model

  • @chungbui7892
    @chungbui7892 4 роки тому

    Thank you, sir

  • @preciousumeha2973
    @preciousumeha2973 4 роки тому

    Thank you sir

  • @abdullahahmadzai6365
    @abdullahahmadzai6365 4 роки тому

    great