One Powerful Integration Weapon

Поділитися
Вставка
  • Опубліковано 11 гру 2024
  • In this video, I am evaluating a very nice viewer suggested integral using interesting trigonometric substitution, instead of using u-substitution. This is a very interesting integral to be nicely evaluated using trigonometric substitution.
    #math #maths
    Subscribe to Dr. PK Math here ⤵️
    www.youtube.co...
    *************
    ✅ Follow Modern Dr PK Math on social media:
    Instagram ▶️ / drpkmath1234
    Facebook ▶️ / drpkmath
    Twitter ▶️ / drpkmath
    *************

КОМЕНТАРІ • 30

  • @gunhasirac
    @gunhasirac 6 днів тому +4

    nice solution but I'm triggered by the arrow notation. Tempting to take a point off lol

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Oops haha funny! Thanks for the support my friend👍👍👍

  • @doctorb9264
    @doctorb9264 6 днів тому +1

    Excellent Integration problem.

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thank you so much for the support my friend👍👍👍

  • @domedebali632
    @domedebali632 6 днів тому +1

    You are always publishing the best videos

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thanks a lot my friend for your support haha👍👍👍

  • @LITHICKROSHANMS-gw2lx
    @LITHICKROSHANMS-gw2lx 6 днів тому +2

    Super solution sir
    Sir can you make a seperate video for advanced integral techniques and upload even more comprehensive integral sir !?
    Thanking you sir!!

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Sounds like an idea my friend! Thanks for your support👍👍👍

  • @MrGLA-zs8xt
    @MrGLA-zs8xt 6 днів тому +1

    Perfect video professor

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thanks a lot my friend for your support 👍👍👍

  • @mathnerd5647
    @mathnerd5647 6 днів тому +1

    Another great video

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thanks a lot my friend for your support 👍👍👍

  • @k_wl
    @k_wl 6 днів тому +2

    if im not wrong this was asked in jee, trig substitution can be used in just about any function with square roots in them

    • @mathnerd5647
      @mathnerd5647 6 днів тому

      I vaguely remember this in jee advanced, but used u-subs instead, which also worked

    • @k_wl
      @k_wl 6 днів тому +1

      @@mathnerd5647 yea i just know its in jee cuz it is usually a class illustration

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Haha I didnt know that👍👍👍

  • @iqtrainer
    @iqtrainer 6 днів тому +1

    Dang this is a very interesting video professor🎉

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thanks for your support my friend👍👍👍

  • @Min-cv7nt
    @Min-cv7nt 6 днів тому +1

    so smart and good looking

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Haha thanks a lot my friend👍👍👍

  • @raghvendrasingh1289
    @raghvendrasingh1289 6 днів тому +1


    second method
    put x = 3t , dx = 3dt new interval [0,1]
    we have to integrate 3 { t^(1/2) } {(1-t)^(-1/2) }
    or 3 { t^(3/2-1) } { t^(1/2-1) }
    I = 3 gamma(3/2) gamma (1/2)/ gamma (2)
    = 3(1/2) √π √π/ (1!)
    = 3π/2

    • @MrGLA-zs8xt
      @MrGLA-zs8xt 5 днів тому

      like a quarter circle?

    • @drpkmath12345
      @drpkmath12345  5 днів тому

      Thats very nice my friend! Haha thanks for the comment👍👍👍

    • @raghvendrasingh1289
      @raghvendrasingh1289 5 днів тому

      @@drpkmath12345 🙏

    • @raghvendrasingh1289
      @raghvendrasingh1289 5 днів тому

      @@MrGLA-zs8xt yes we can evaluate it by quarter circle also
      let 3 - x = t^2
      d x = - 2 t dt
      now integral is
      2 sqrt (3 - t^2) in [0,√3]
      = 2 area of quarter circle with radius √3
      = 2 π(3)/4 = 3 π/2

  • @tarentinobg
    @tarentinobg 4 дні тому +1

    You are making this too complicated
    Just go straight to the x = 3 Sin^2 t. where t = theta. You don't need the preamble with the a and b variables.
    Then factor out the √3 to get 1 - Sin squared and so the denominator becomes √3 cox t.
    That is so much easier than what you are doing man.

    • @MrGLA-zs8xt
      @MrGLA-zs8xt 4 дні тому +2

      Why? Why x is 3sin^2t? Why? You need to explain it. That's what Dr PK did. You are skipping so many steps and say your method is easier? Is that even math? DR PK method is far more superior than yours man. Stop doing it

    • @iqtrainer
      @iqtrainer 4 дні тому +1

      Yours is a lot uglier and off the track. You didnt even get the answer. You did it worse than dr pk

    • @ginonapoli7929
      @ginonapoli7929 4 дні тому

      @@MrGLA-zs8xt Really?
      I did the same thing. I just skipped the √a^2-b^2 part.
      You asked me to explain. Okay.
      If you get "1 - Sin^2 t" you can use the trig identity to get Cos^2 t.
      Since you can factor out 3, you substitute x = 3 Sin^2 t
      Notice this explanation just uses a high school trig pythagorean identity rather than fitting into a pattern with variables a and b

    • @MrGLA-zs8xt
      @MrGLA-zs8xt 4 дні тому +2

      @@ginonapoli7929 I did the same thing? You are that tarentinobg. Why are you pretenting like a different person? Also, I hate trig. So, your method is worse. So, Dr. PK's method is a lot more sophisticated. Easier for you. But worse for me. Plus, you keep saying trig identity I know. But why is it easier to use for that integral? You did not explain any rationale.