Olympiad Mathematics | A Very Nice Geometry Problem | 2 Methods

Поділитися
Вставка
  • Опубліковано 5 лют 2025
  • GET MY EBOOKS
    •••••••••••••••••••••••
    150 Challenging Puzzles with Solutions : payhip.com/b/y...
    Function : payhip.com/b/y...
    Sequence and Series : payhip.com/b/B...
    Differentiation : payhip.com/b/W...
    Indefinite Integration : payhip.com/b/8...
    Definite Integration + Area under the Curve : payhip.com/b/1...
    Trigonometry : payhip.com/b/8...
    OTHER CHAPTERS : COMING SOON.....
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

КОМЕНТАРІ • 44

  • @oscarcastaneda5310
    @oscarcastaneda5310 День тому +16

    NIce way to begin the day : )
    Using Heron's formula I found the area of △ABD to be 336 and its height to side BD to be 24. From this I focused on the right triangle with sides 24, 45, and AC from which AC = 51.

    • @kateknowles8055
      @kateknowles8055 7 годин тому

      Already 16 👍s in 22 hours from Math Booster viewers for Heron's formula use here!

  • @AzouzNacir
    @AzouzNacir День тому +6

    We put

  • @holyshit922
    @holyshit922 День тому +7

    Law of cosines twice
    In triangle ABD to calculate angle B
    In triangle ABC to calculate side length x

    • @dickroadnight
      @dickroadnight День тому

      You can do it in one line by equating the cos of an angle to minus the cos of the angle of its supplement.
      I call it the cos (supplement) rule.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День тому +7

    Applying Stewart's Theorem in triangle ABC, we find 30²*35+x²*28=63*[26²+28*35], and from this x=51

    • @Eror7403
      @Eror7403 День тому +2

      Ese es el 2do método que ha realizado en el video.

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 23 години тому +1

      ​@@Eror7403Yes, when I found that the solution in the video was using Stewart’s method, I suggested another method, which is available in the comments. Thank you.

    • @WahranRai
      @WahranRai 23 години тому +2

      @@Eror7403 We do not re-demonstrate known theorems already demonstrated (otherwise demonstrate Pythagoras at each use)

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День тому +4

    Let's assume that

  • @davidellis1929
    @davidellis1929 День тому +2

    The problem can be solved easily by recognizing multiples of Pythagorean right triangles with integer sides and integer areas, specifically 3-4-5, 5-12-13 and 8-15-17. The 26-28-30 triangle is double the well known 13-14-15 triangle, whose altitude to the side of length 14 divides it into 9-12-15 (three times 3-4-5) and 5-12-13. So the altitude to the side of length 28 is 24 units and divides it into segments of length 18 and 10. The altitude forms another right triangle whose legs are 24 and 45 (10+35), three times 8 and 15, so x is three times 17, or 51.

    • @oscarcastaneda5310
      @oscarcastaneda5310 19 годин тому

      Awesome, I thought along the same line of thought : )

  • @nedmerrill5705
    @nedmerrill5705 День тому +2

    You can use Herron's formula to get area [ABD], and since 1/2 * (altitude) * (base), you can get the altitude straight away: Altitude = ( [ABD] * 2 ) / [BD]. Then find [a] via Pythagoras on [altitude] and [AD], then find [x] via Pythagoras on [altitude] and [a] + [DC].

  • @marioalb9726
    @marioalb9726 18 годин тому +2

    Stewart's theorem:
    b²m+c²n=(m+n).(d²+mn)
    x².28+30².35 = (28+35).(26²+28 .35)
    x = 51 cm ( Solved √ )

  • @marioalb9726
    @marioalb9726 18 годин тому +2

    Cosine rule:
    x²=30²+(28+35)²-2.30.(28+35)cosα
    cosα= (30²+63²-x²)/3780
    Cosine rule:
    26²=30²+28²-2.30.28.cosα
    cosα= (30²+28²-26²)/1680
    Equalling:
    (30²+63²-x²)/3780=(30²+28²-26²)/1680
    4869-x² = 9/4 *1008
    x²= 2601 --> x = 51cm (Solved √)

  • @Rudepropre
    @Rudepropre День тому +3

    Stewarts theorem. Other than that pythagoras or even cosine rule

  • @devondevon4366
    @devondevon4366 7 годин тому +1

    51
    Draw a perpendicular line inside the left triangle (ABC). Let the height = AP
    Let BP = n, then CP = 28-n
    Hence, AP^2 =30^2 - n^2
    But AP^2 , also= 26^2 - (28-n)^2
    Hence, 30^2 - n^2 = 26^2 - (28-n)^2 since both =AP^2
    30^2 -26^2 + 28^2 = n^2 - n^2 + 56n
    2601 = 56 n
    n=18
    Hence, 28- n =10
    Hence, the middle triangle is a 5-12-13 right triangle scaled up by 2
    Hence, AP = 24 ( 2*12)
    Hence, AP^2 +45^2 =x^2 note 45 comes from 35 + 10 . Recall that 28-n =10
    Hence, 24^2 + 45^2 =x^2
    2601 = x^2
    51 = x

    • @kateknowles8055
      @kateknowles8055 6 годин тому

      Hello Devon buddy. Thank you for writing this clear method. It shows that Math Booster leads the way for assorted rigorous solutions and successful followers.

    • @devondevon4366
      @devondevon4366 6 годин тому +1

      @kateknowles8055 no problem glad it was helpful

  • @kateknowles8055
    @kateknowles8055 23 години тому +1

    cosine (ADB) = (BD.BD + AD.AD - AB.AB) /(2.BD.AD)
    = (784 + 676 - 900) / (2.728) = (484 +76) / (16. 7.13) = 560/(16.7.13) = 5/13 = - cosine (ADC)
    X.X = 26.26 + 35.35 - 2.26.35 cosine (ADC) =676 + 1225 - (52.35 )( - 5/13) = 1901 + 4.35.5 = 2601
    The measure of X is 51 It needed the use of the cosine rule in each way, finding an angle, then finding a length.
    Now I am going to see the video and comments.

    • @oscarcastaneda5310
      @oscarcastaneda5310 19 годин тому

      I was thinking similarly but as this was happening I realized it was possible to do the area via Heron's formula without using pencil and paper so I opted for that route.
      Good thinking my genius Math Amiga ==> MathMiga : )

  • @jimlocke9320
    @jimlocke9320 День тому +1

    In Method #1, let AM = h. From ΔADM, h² + a² = (26)² = 676. From ΔABM, h² + (28 - a)² = (30)². Expand: h² + (28)² - (2)(28)(a) + a² = (30)², h² + 784 - 56a + a² = 900. Simplify: h² + a² -56a = 116. Replace h² + a² by 676: 676 -56a = 116, -56a = -560, a =10. Replace a² by (10)² = 100 in h² + a² = 676: h² + 100 = 676, h² = 576 and h = 24. From ΔACM, x² = h² + (a + 35)° = 576 + (10 + 35)² = 576 + (45)² = 576 + 2025 = 2601, x = 51, as Math Booster also found.

  • @imetroangola17
    @imetroangola17 День тому +2

    *3° Método:*
    No ∆ABD:
    s=(30+26+28)/2 = 42. Pela fórmula de Heron:
    [ABD]=[42×(42 -26)×(42 -28)×(42 -30)]½
    [ABD]=[42×16×14×12]½=336
    Seja H em BP, o pé da perpendicular do vértice A. Assim,
    AH × BD/2 = 336 → AH × 28/2 = 336
    AH = 336/14 = 24. Por Pitágoras, no ∆ABD:
    HD² = AD² - AH² = 26² - 24² =100
    HD = 10. Por Pitágoras, no ∆AHC:
    AC² = AH² + HC²
    x² = 24² + (10 +35)² =
    x² = 2601
    *x = 51.*

  • @ina-j2p
    @ina-j2p День тому

    AからBDに垂線AH
    HDの長さをyとすると、
    26^2-y^2=30^2-(28-y)^2
    28^2-56y=900-676=224
    784-224=56y
    560=56y
    y=10
    x^2=676-100+45^2
    =576+2025
    =2601
    =51^2
    ∴x=51

  • @murdock5537
    @murdock5537 День тому +1

    ABC = δ → cos⁡(δ) = 3/5 → x = 51

  • @GiovanniRusso-d6g
    @GiovanniRusso-d6g 3 години тому

    ADB = γ ACD = π - γ
    Carnot theorem
    cos γ = (28² + 26² - 30²) / 2∙26∙28 cos γ = 5 / 13
    cos (π - γ) = - cos γ
    x² = 35² + 26² + 2∙35∙25∙5/13 x = 51

  • @solomou146
    @solomou146 День тому

    Very nice problem with at least 5 solutions. The most suitable, in my opinion, with Stewart's Theorem.

  • @zdrastvutye
    @zdrastvutye 21 годину тому

    it is a system of 2 nonlinear equations:
    10 print "mathbooster-olympiad mathematics feb2025:dim x(1,2),y(1,2)":dim x(2,2),y(2,2)
    20 la=30:lb=26:lc=28:ld=35:lh=(la^2-lb^2+lc^2)/2/lc:h=sqr(la^2-lh^2)
    30 lx=sqr(h^2+(lc+ld-lh)^2):print lx:x(0,0)=0:y(0,0)=0:x(0,1)=lc:y(0,1)=0
    40 x(0,2)=lh:y(0,2)=h:x(1,0)=lc:y(1,0)=0:x(1,1)=lc+ld:y(1,1)=0:x(1,2)=x(0,2):y(1,2)=y(0,2)
    50 masx=1200/(lc+ld):masy=850/h:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 День тому +1

    Can you please provide proof of
    b^2m+c^2n=a(d^2+mn)? Oh! I didn't remember Stewart's theorem.Ok.Now it is clear.Thanks.

    • @MathBooster
      @MathBooster  День тому

      Watch this video
      ua-cam.com/video/ZfYG92_3LUQ/v-deo.html

    • @NadiehFan
      @NadiehFan День тому

      See the article on _Stewart’s theorem_ in the English Wikipedia for a simple proof using the law of the cosines.

  • @befactfull525
    @befactfull525 16 годин тому +1

    CAN BE DONE WITH COSINE RULE

  • @うっちゃん-e8e
    @うっちゃん-e8e День тому

    Aから直線BCに垂線を引いて交点をEとし、DEの長さをaとする。
    ピタゴラスの定理より30^2₋(28₋a)^2₌26^2₋a^2 
    900₋784₊56a₋a^2₌676₋a^2  116₊56a₌676 56a₌560 a₌10
    x^2₌26^2₋10^2₊(35₊10)^2₌2601 X₌√2601₌51

  • @yakupbuyankara5903
    @yakupbuyankara5903 14 годин тому +1

    X=51

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 День тому

    Calculators are allowed?

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому

    ADB=α...cosα/2=√(42*12/26*28)=3/√13...(Briggs)...x^2=26^2+35^2-2*26*35cos(180-α)=676+1225+52*35(2*9/13-1)=676+1225+700=1925+676=2601

  • @AmirgabYT2185
    @AmirgabYT2185 День тому +1

    x=51

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 20 годин тому

    (28)^2(30)^2={784+900}=1684 {60°A60°B+60°C}=180°ABC 1684/180°ABC214 10^20^14 10^2^10^7^7 5^5^2^5^5^3^4^3^4 2^3^2^3^2^2^3^2^3^1^2^2^1^2^2 1^1^1^1^1^1^1^1^3^1^1^1^2 3^1^1^2 32(ABC ➖ 3ABC+2).(26)^2 (35)^2={576+1225}=1801 {45°A+45°B+90°C}=180°ABC 1801/180=10.1 5^5.1 2^3^2^3.1 2^1^1^3.1 2^1^3.1 2^3 (ABC ➖ 3ABC+2).

  • @nenetstree914
    @nenetstree914 День тому

    51

  • @devondevon4366
    @devondevon4366 11 годин тому

    51