2-Qubit Computational Basis States, Tensor Products, Orthonormality, 4D Hilbert Space

Поділитися
Вставка
  • Опубліковано 4 гру 2024

КОМЕНТАРІ • 15

  • @kmunson007
    @kmunson007 11 місяців тому +2

    Really good explication. I agree with others, your ability to explain things and get to the point in a short (shortest possible) amount of time is fantastic. Hopefully the magical UA-cam algorithm kicks in and starts recommending these videos to a large audience. I think once anyone watches one of your videos, they will come back for other topics.

  • @user-fo3ug3cr4m
    @user-fo3ug3cr4m Рік тому +3

    This is the video I needed.

  • @teewenhui2717
    @teewenhui2717 10 місяців тому +1

    amazing

  • @LucifferKesing
    @LucifferKesing 11 місяців тому

    this help me lot in my study thanks

  • @assassin_un2890
    @assassin_un2890 Рік тому

    nice explained, your videos are under rated i think

  • @satviksrinivas8764
    @satviksrinivas8764 Місяць тому

    thank you

  • @nghiavo6263
    @nghiavo6263 9 місяців тому +4

    Pls come to my school and replace my professor

  • @areebarashid4937
    @areebarashid4937 Рік тому

    Well explained but can you make a video for 3-Qubit Computational Basis States, Tensor Products.

  • @zinzhao8231
    @zinzhao8231 3 місяці тому

    can you explain how the 2x1 vectors inside the 4x1 vector collpase into inidices for the 4x1 vector??

  • @dimitris17
    @dimitris17 6 місяців тому

    What does the symbolism |0,1> means then??? (or |0,0> etc.)

  • @jacobvandijk6525
    @jacobvandijk6525 Рік тому

    How can the state | 0 0 > or | 1 1 > be a physically acceptable state? Aren't they violating Pauli's Exclusion Principle?

    • @amouxx1052
      @amouxx1052 7 місяців тому

      It is often cumbersome to write the ⊗ symbol. Therefore you should be aware that
      the tensor product |φ> ⊗ |χ> is often written more simply as |φ>|χ> , or even as |φχ> .

    • @jacobvandijk6525
      @jacobvandijk6525 7 місяців тому

      @@amouxx1052 Yes, but don't do that in teaching this subject.

    • @amouxx1052
      @amouxx1052 7 місяців тому

      @@jacobvandijk6525 agree

  • @andreis8100
    @andreis8100 4 місяці тому

    Wouldn't that be the Kronecker Product at the start rather than the tensor product? Or are they the same thing.