Can you find the angle X? | (Semicircle) |

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 61

  • @thomasgreene5750
    @thomasgreene5750 День тому +27

    A simpler solution is to recognize triangle BOC is isosceles, so the angle BOC is 50 deg. The triangles BOC and COD are congruent, so the angle BOD is 100 deg. This makes the angle AOD 80 deg. The triangle AOD is isosceles, so the angle x is 50 deg.

    • @RAG981
      @RAG981 День тому +4

      Actually x is half of the 100, angle at centre is twice angle at circumference.

    • @Amor-g5b
      @Amor-g5b День тому +1

      Ce qui est plus facile

    • @sureshkumaresanan9499
      @sureshkumaresanan9499 День тому

      ഞാനും ഈ രീതിയിലാണ് ചെയ്തത്

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq День тому +1

      I like it.

    • @quigonkenny
      @quigonkenny День тому

      ​​@@RAG981Both are correct. As ∠OBC = 65°, and as ∆COB and ∆DOC are congruent isosceles triangles, then ∠BCO = ∠OCD = ∠CDO = 65°, and ∠COB = ∠DOC = 180°-2(65°) = 50°. That means ∠DOB = 2(50°) = 100° and ∠AOD = 180°-100° = 80°, and you can get that ∠DAB = x = 50° either by recognizing that ∆AOD is isosceles and thus ∠ODA = ∠DAO = (180°-80°)/2 = 50°, or that ∠DAB = ∠DOB/2 = 100°/2 = 50°. Either one works.

  • @jimlocke9320
    @jimlocke9320 День тому +7

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День тому +7

    Join AC. Angle ACB=90 degrees being inscribed in semi circle.
    Angle CAB =180-65-90 =25 degrees
    Angle CAB = angle CAD= 25 degrees
    ( inscribed angles are on equal chord)
    Hence angle x = 25+25=50 degrees

  • @marioalb9726
    @marioalb9726 7 годин тому +1

    OC is parallel to AD
    x = 180°-2*65°= 50° ( Solved √ )

  • @marioalb9726
    @marioalb9726 10 годин тому +1

    x = ½α = ½.2(180°-2*65°) = ½.100°
    x = 50° (Solved √)

  • @مطبخالشاطرسراج
    @مطبخالشاطرسراج День тому +2

    A simple solution: draw AC, m(arc DB) = 2x, since angle DAB is inscribed and equals half the subtended arc, but m(arc BC) = ½ m(arc DB) = x because DC = BC, and therefore AC bisects angle A, and m(ACB) equals 90 degrees, so we have an equation: x/2 + 65 + 90 = 180, solving it will give us x = 50

  • @ОльгаСоломашенко-ь6ы

    Соединяем точки D и C с центром окружности. Получаем два равных равнобедренных треугольника с улами при вершине O равными 180°-65°*2=50°.< 0:57 DOB=50°2=100°. Это центральный угол окружности, угол x вписанный в окружности и равен половине этого центрального угла x=50°.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День тому +2

    Join OC.and OD. Now triangle OBC is isosceles.
    Angle BOC = 180- 2*65 = 50 degs
    Triangles OCD and OBC r congruent.
    Then ang COD =50 degs
    Ang BOD = 50+50=100 degrees
    Inscribed Angle x = 1/2 of centre angle BOD =50 degrees

  • @jamestalbott4499
    @jamestalbott4499 День тому +1

    Thank you!

  • @allanflippin2453
    @allanflippin2453 День тому +1

    The key is that we have a cyclical quadrilateral. I found a very simple way with math you can solve in your head. Add lines to form triangles OCB and OCD. It's easily shown that these are isosceles triangles. Therefore angles OCB and OCD are both 65 and the total angle C is 130. x = 180 - 130 so x = 50.

    • @dickroadnight
      @dickroadnight 23 години тому

      Yes… that is what I figured out.

  • @burgazadaeczanesi5338
    @burgazadaeczanesi5338 День тому +2

    Simpler solution : AOD angle is 130 degrees (center angle doubles of 65 ) in the isosceles triangle of AOD x=(180-130)/2=25

  • @joeschmo622
    @joeschmo622 День тому +5

    It took me like 30sec from just the thumbnail. Draw 2 radii to make triangles COB and DOC, as well as AOD. They''re all isosceles with 2 radii as sides. DOC has 65deg and another 65deg angle, making 130, from 180 leaves a 50deg angle. Same for triangle COB (CB and DC are equal). So you got 2 50deg angles making angle DOB 100deg. That leaves angle DOA as a supplementary angle of 80deg. 180 - 80 = 100deg for 2 angles x and x (again, isosceles). Split the difference, and that makes each x=50deg.
    Oh, and ✨Magic!✨ 😂😂😂

    • @thomasgreene5750
      @thomasgreene5750 День тому

      I did the same solution by inspection as well.

    • @gurujeetparihar
      @gurujeetparihar День тому

      I too think it's an easier approach
      X + X + 65 + 65 + 65 + 65 = 360
      X = 50
      🎉

  • @davidstecchi9501
    @davidstecchi9501 19 годин тому

    m

  • @bkp_s
    @bkp_s День тому

    Good to be here particularly for me,no doubt.

  • @engralsaffar
    @engralsaffar День тому

    i connected OD and OC, to get 2 equilateral triangles, with 65 degrees for angles ODC, OCD and OCB, this makes angle DOB =100 degrees (360-4*65)
    angle x is the angle at the circumference and is therefore half of the angle at the center DOB, therefore x=50 degrees

  • @quigonkenny
    @quigonkenny День тому

    As points A, B, C, and D all appear on the circumference of semicircle O, ABCD is a cyclic quadrilateral and its opposite angles must sum to 180°. That means rhat ∠ABC and ∠CDA sum to 180°, and ∠BCD and ∠DAB sum to 180°. ∠ABC is given as 65°, so ∠CDA = 180°-65° = 115°.
    Draw BD. As A and B are points at the ends of a diameter and D is a point on the circumference, then by Thales' Theorem, ∠BDA = 90°. As ∠CDA = 115°, ∠CDB = 115°-90° = 25°.
    As BC = CD, ∆BCD is an isosceles triangle, so ∠DBC = ∠CDB = 25°. As the internal angles of a triangle must sum to 180°, that means that ∠BCD = 180°-2(25°) = 130°. Also, as ∠ABC = 65° and ∠DBC = 25°, ∠ABD = 65°-25° = 40°.
    We now have two methods to determine the value of ∠DAB:
    As ∠DAB and ∠BCD must sum to 180° and ∠BCD = 130°, x = 180°-130° = 50°.
    To confirm, as the the internal angles of a triangle must sum to 180°, ∠ABD = 40°, and ∠BDA = 90°, then ∠DAB = x = 180°-(90°+40) = 50°.
    [ x = 50° ]

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День тому

    Another method
    Join OC and OD
    . Now triangle OBC is isosceles. Ang OBC = ang OCB =65 degs
    Triangles OBC and OCD r congruent. Hence
    ang OCD =65 degrees
    Ang BCD = 65*2 = 130 degrees
    Then x = 180 -130=50 degrees.

  • @alexundre8745
    @alexundre8745 День тому

    Bom dia Professor
    Obrigado pelo exercício
    Grato

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    180°ABCDO/90=2ABCDO (ABCDO ➖ 2ABCDO+2).

  • @vikramsinghshekhawat7680
    @vikramsinghshekhawat7680 День тому

    Could you please tell me the name of software/platform on which you make the videos?

  • @phungpham1725
    @phungpham1725 День тому

    1/Connect OC, OD.
    The triangles DOC and COB are conguent so the angles DOC and COB are conguent too.
    --> x = 1/2 angle DOB= angle COB
    Focus on the isosceles triangle COB
    -> x= 180 - ( 2. 65 ) =50 degrees😅😅😅

  • @v.i.p_YT3
    @v.i.p_YT3 День тому +1

    Do u teach tuition

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho День тому +2

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Observe that : OA = OD = OC = OB = R
    02) Isosceles Triangle [OBC] = Isoceles Triangle [OCD]
    03) This two Isosceles Triangles are : (65º ; 65º ; 50º)
    04) Triangle [OAD] is Isosceles with Angles (Xº ; Xº ; Yº)
    05) Angle (BOD) = 50º + 50º = 100º. So, Angle (AOD) = (180º - 100º) = 80º
    06) Yº = 80º
    07) As Triangle [AOD] is Isosceles we have :
    08) 2Xº + 80º = 180º ; 2Xº = 180º - 80º ; 2Xº = 100º ; Xº = 100º / 2 ; Xº = 50º
    Therefore,
    OUR BEST ANSWER :
    Angle X = 50º
    NOTE:
    As Central Angle (BOD) = 100º then Inscribed Angle (BAD) = 100º / 2 = 50º

    • @nandisaand5287
      @nandisaand5287 День тому +1

      This was my approach as well. No over-complicated esoteric theorems, just some Isosceles Triangles.

    • @PreMath
      @PreMath  6 годин тому +1

      Excellent!👍
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День тому

    Another method
    A) ABCD is a cyclic quadrilateral.
    Hence angle C= 180 -x
    Join DO.
    AOD is an isosceles triangle
    B) Ang BAD=Ang ADO =x
    Join BD.
    BCD is an isosceles triangle
    C) ang BD C= angle CDB (1)
    BOD is an isosceles triangle.
    D) ang ODB = ang OBD (2)
    Adding 1 and 2 we get E) E) angle
    ODC = ang OBC =65 degs
    F) Again Angle DOB =2x
    Now angles
    DOB +OBC +BCD +ODC =360
    >2x +65 +180 -x +65=360
    > x =50
    x = 50 degrees

  • @cyruschang1904
    @cyruschang1904 5 годин тому

    X = [360° - 4(65°)] ÷ 2 = 100° ÷ 2 = 50°

  • @yakovspivak962
    @yakovspivak962 7 годин тому +1

    X = 2 × (90° - 65°) = 50°

    • @PreMath
      @PreMath  6 годин тому

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 День тому

    My way of solution ▶
    Let's consider the triangle ΔOAB, this is an isosceles triangle:
    [OA]=[BO]= r
    [AB]= a
    ∠OAB= 65°
    ∠ABO= 65°

    ∠BOA= 180°-2*65°
    ∠BOA= 50°
    By applying the sinus theorem, we get:
    sin(50°)/a= sin(65°)/r= sin(65°)/r
    a= r*sin(50°)/sin(65°)
    stept-2) Let's consider the isosceles triangle ΔOBC:
    ∠COB= Θ
    [OB]= [CO]= r
    [BC]= [AB]
    [BC]= a
    [BC]= r*sin(50°)/sin(65°)
    ∠OBC= y
    ∠BCO= y
    ∠COB= Θ
    By applying the cosine theorem we get:
    a²= r²+r²-2r²*cos(Θ)
    [r*sin(50°)/sin(65°)]²= 2r² - 2r²cos(Θ)
    r²*(0,845236523)² = 2r²(1-cos(Θ))
    0,71442478*r²= 2r²(1-cos(Θ))
    1-cos(Θ)= 0,35721239
    cos(Θ)= 0,642787609

    Θ= 50°
    step-3) Let's consider the isosceles triangle ΔOCD :
    [DO]=[OC]= r
    ∠ CDO= ∠OCD = x
    ∠ DOC= α
    α= 180° - Θ - ∠BOA
    Θ= 50°
    ∠BOA= 50°

    α= 80°
    α+2x= 180°
    80°+2x= 180°

    x= 50° ✅

  • @unknownidentity2846
    @unknownidentity2846 День тому

    Let's find x:
    .
    ..
    ...
    ....
    .....
    The triangle OBC is an isosceles triangle. So we can conclude:
    ∠OCB = ∠OBC = 65°
    ∠BOC = 180° − ∠OCB − ∠OBC = 180° − 65° − 65° = 50°
    The triangles OBC and OCD are congruent (OB=OC=OD and BC=CD). So we obtain:
    ∠OCD = ∠ODC = 65°
    ∠COD = 50°
    The triangle OAD is an isosceles triangle as well. So we can calculate the value of x as follows:
    ∠AOD = 180° − ∠BOC − ∠COD = 180° − 50° − 50° = 80°
    x = ∠OAD = ∠ADO = (180° − ∠AOD)/2 = (180° − 80°)/2 = 100°/2 = 50°
    Best regards from Germany

  • @misterenter-iz7rz
    @misterenter-iz7rz День тому

    Simply 180-2×65=50.😊

  • @prossvay8744
    @prossvay8744 День тому

    X=50°.❤

  • @wackojacko3962
    @wackojacko3962 День тому +1

    🙂

    • @PreMath
      @PreMath  6 годин тому

      😀
      Thanks ❤️

  • @apexpredatorbilliardstraining
    @apexpredatorbilliardstraining День тому

    My apologies I just realize why it was necessary because apart of the 65• was cut off! Thanks beautiful math problem

    • @PreMath
      @PreMath  6 годин тому

      You are welcome! Glad you enjoyed it. 😊
      Thanks for the feedback ❤️

  • @nenetstree914
    @nenetstree914 День тому

    50

  • @sergioaiex3966
    @sergioaiex3966 День тому

    Solution:
    If OB is the radius and OC, as well, is the radius, then OBC is an isosceles triangle.
    Therefore, the angle OCB is 65°.
    Now, let's trace the radius OD and since BC is equal to CD, then the triangles OBC and OCD are congruents. Thus, the angle C is 65° + 65° = 130°
    Finaly, the quadrilateral ABCD is a Cyclic Quadrilateral and the opposite angles ad up 180°
    Therefore:
    A + C = 180°
    x + 130° = 180°
    x = 50° ✅

  • @DalindanYiyenAdam
    @DalindanYiyenAdam День тому

    50 derece . 25 sn lik soru

    • @PreMath
      @PreMath  6 годин тому

      Thanks for the feedback ❤️

  • @onix460
    @onix460 20 годин тому

    OB =OC =>OBC=BCO=65°=>BOC=180°-65°×2=50°
    ∆OBC=∆OCD=>COD=BOC=50°
    BOD=50°+50°=100°=>AOD=180°-100°=80°
    AO=OD=>X=ADO=>X=(180°-80°)/2=50°
    That's all

  • @wasimahmad-t6c
    @wasimahmad-t6c День тому

    40