Logistic Regression in 3 Minutes

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 38

  • @3-minutedatascience
    @3-minutedatascience  7 місяців тому +1

    To support more videos like this, please check out my O'Reilly books.
    Essential Math for Data Science
    amzn.to/3Vihfhw
    Getting Started with SQL
    amzn.to/3KBudSY
    Access all my books, online trainings, and video courses on O'Reilly with a 10-day free trial!
    oreillymedia.pxf.io/1rJ1P6

  • @fizoolplayer
    @fizoolplayer 2 роки тому +41

    I'm grateful that people like you carrying the work Grant started. One person can only do so much, but I'm sure people like you will revolutionise maths learning in the future with ever-growing topics covered.

  • @mdzohaib7368
    @mdzohaib7368 11 місяців тому +6

    I recently discovered that this is the Thomas Nield channel, and I must express my admiration. Your book, "Essential Math for Data Science," has been invaluable to my learning journey. Sir, your work is amazing, and I look forward to watching more of your videos. Please continue inspiring us with your expertise.

    • @boluwatifeadebowale1427
      @boluwatifeadebowale1427 7 місяців тому

      Good day, how can i get this book pls

    • @3-minutedatascience
      @3-minutedatascience  7 місяців тому

      Thank you! It means a lot it helped you. And @boluwatifeadebowe1427 you can get the books here:
      Essential Math for Data Science
      amzn.to/3Vihfhw
      Getting Started with SQL
      amzn.to/3KBudSY
      You can also access all my books, live online trainings, and video courses on O'Reilly.
      oreillymedia.pxf.io/1rJ1P6

  • @tksnail6837
    @tksnail6837 2 роки тому +10

    Very well made video! Reminds me of 3 blue 1 brown

    • @3-minutedatascience
      @3-minutedatascience  2 роки тому +9

      Grant’s work was definitely an inspiration for this series! And thank you

    • @nfiu
      @nfiu 2 роки тому +2

      @@3-minutedatascience also Manim is in use here am I right? Loved the video btw!

    • @3-minutedatascience
      @3-minutedatascience  2 роки тому +2

      @@nfiu Yes, these videos use Manim

  • @MrBaggyman123
    @MrBaggyman123 2 роки тому +2

    Thank you! Using this to refresh the mechanics behind some methods for my data analytics course. Short, but powerful video.

    • @familians
      @familians Рік тому

      This video could help you out too:
      Another great video about logistic regression in JMP
      ua-cam.com/video/9yN_yjGAJZE/v-deo.htmlsi=jUwEZUDobBudE8AE

  • @fretzT_T
    @fretzT_T 2 роки тому +3

    Your videos are so well made.

  • @lazzy5173
    @lazzy5173 3 місяці тому

    Underrated channel!

  • @matthewchunk3689
    @matthewchunk3689 Рік тому

    concise, clear and under 4 minutes. bravo and thanks for your work!

  • @kaido453
    @kaido453 Рік тому +4

    I love this video keep going :D

    • @familians
      @familians Рік тому

      You could like this video too:
      Another great video about logistic regression in JMP
      ua-cam.com/video/9yN_yjGAJZE/v-deo.htmlsi=jUwEZUDobBudE8AE

  • @deepakpaira0123
    @deepakpaira0123 10 місяців тому

    Upload more videos for the all Algorithms in machine learning and deep learning

  • @chrissemenov8901
    @chrissemenov8901 2 місяці тому

    Great video! Thanks!

  • @risausa4796
    @risausa4796 Рік тому +1

    Thanks for this video! I like the visual graphics and the voice 😀

    • @familians
      @familians Рік тому

      Another great video about logistic regression in JMP
      ua-cam.com/video/9yN_yjGAJZE/v-deo.htmlsi=jUwEZUDobBudE8AE

  • @davemattie3620
    @davemattie3620 Рік тому

    Amazing, this is such a clear and concise video. What do you use for your animations?

  • @abdulnafeysyed1016
    @abdulnafeysyed1016 9 місяців тому

    I'd like to see a video of polynomial regression from you :)

  • @MikeSieko17
    @MikeSieko17 Рік тому

    when are we getting the maximum likelihood video

  • @Webenefit_Youtube
    @Webenefit_Youtube 6 місяців тому

    Thank you very much.

  • @y.8901
    @y.8901 Рік тому

    Hello, nice video ! how did you classifier in 2 perfects lines ? My hypothesis is that : Lets say you have 2 features : weight and height, you place them in a 2D plan. Then, you find a decision boundary, and give the decision boundary, you predicts all these points and then given the distance of each point and the decision boundary, you place them in the sigmoid function. Is it right ?
    If not, can you explain me briefly how we do that ? Because I'm but confused about what we optimize : In the video you explain that we optimize the sigmoid function in order to get the best accuracy. But in a 2d plan, how does this reflect, how do we see the line ? When we optimize the sigmoid function, does the line change or not ?
    Thanks in advance !

  • @jasonoganesian1458
    @jasonoganesian1458 11 місяців тому

    bravo - well done

  • @alireza.m
    @alireza.m 4 дні тому

    tnx

  • @Abdelrahman-nj2pl
    @Abdelrahman-nj2pl Рік тому

    amazing video, Thank you very much

  • @shruti2981
    @shruti2981 8 місяців тому

    😊😊😊

  • @davidjungbauer3470
    @davidjungbauer3470 2 роки тому

    Prⓞм𝕠𝕤𝐌

  • @Alpha_Sadigh
    @Alpha_Sadigh Рік тому

    ☯️🙏

  • @kartikbathla9588
    @kartikbathla9588 3 місяці тому +1

    bruh wasted the first 15 seconds

  • @GrafBazooka
    @GrafBazooka 11 місяців тому +13

    statquest is better explainer