A Heptic Functional Equation

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 20

  • @stephenshefsky5201
    @stephenshefsky5201 6 місяців тому +5

    Assume f(z) is a 7th order polynomial. Then, let z = x + 1/x. We quickly find that even terms drop out, so f(z) = z^7 + a*z^5 + b*z^3 + c*z. Substituting z = x + 1/x and expanding, we have x^7 + 1/x^7 = x^7 + (7 + a)*x^5 + (21 + 5*a +b)*x^3 + (35 +10*a + 3*b +c)*x, from which we can determine a = -7, b = 14, c = -7.

  • @paulortega5317
    @paulortega5317 6 місяців тому +3

    Let f(n) = x^n + 1/x^n
    f(0) = 2
    Let f(1) = a
    Then f(n+2) = f(1)*(fn+1) - f(n) = a*f(n+1) - f(n)
    Then f(2) = a^2-2, f(3) = a^3- 3a, f(4) = a^4 - 4a^2 + 2,… f(7) = a^7 - 7a^5 + 14a^3 - 7a
    Or in general,
    f(n) = Σ (-)^k * (n/(n-k)) * (n-k)!/(k!(n-2k)!) * a^(n-2k) for k = 0 to n/2 or k = (n-1)/2 depending on whether n is even or odd

    • @SyberMath
      @SyberMath  6 місяців тому

      Wow!

    • @paulortega5317
      @paulortega5317 6 місяців тому

      @@SyberMath Yeah, I love this stuff. Thanks for the problems.

    • @wannabeactuary01
      @wannabeactuary01 6 місяців тому

      @@paulortega5317 but what is original f(x) ?

    • @paulortega5317
      @paulortega5317 6 місяців тому

      @@wannabeactuary01 My objective was given x+1/x=f(1)=a, for f(n), what is the polynomial expansion in powers of a with a formula for the coefficients. Just like using n!/(k!(n-k)!) to calculate the coefficients for the nth row of Pascal's triangle.

    • @wannabeactuary01
      @wannabeactuary01 6 місяців тому

      @@paulortega5317 It was brilliant but could not relate to the solution for what is the explicit function f(x).

  • @thomaspickin9376
    @thomaspickin9376 6 місяців тому +2

    Just tried to figure it expanding the binomials and getting rid of the highest power term each time:
    (x+1/x)^7 = x^7 + 1/x^7 + 7 x^5+ 21 x^3+ 35x + 35/x + 21/x^3 + 7/x^5
    so we need -7(x+1/x)^5 to leave a x^3 power and so on.
    f(x) = x^7-7x^5+14x^3-7x
    f(x+1/x) = x^7+1/x^7

  • @MisterPenguin42
    @MisterPenguin42 6 місяців тому +2

    I like these and the exponential videos the best and I love whenever Lambert's function shows up. It's like the John Cena of math. The trig stuff and i stuff is growing on me; I just need to get more comfortable with complex numbers. There's a huge knowledge gap there.

    • @SyberMath
      @SyberMath  6 місяців тому +1

      Did you check out www.youtube.com/@aplusbi? 😊

    • @MisterPenguin42
      @MisterPenguin42 6 місяців тому

      @@SyberMath #MostDefinitely

  • @mathyfun
    @mathyfun 5 місяців тому

    Advertisement of king

  • @mikeparfitt8897
    @mikeparfitt8897 6 місяців тому

    I thought that this could be solved with the floor function, but it fails when t=±2 i.e. when x=±1
    The Excel version is
    f(t) = SIGN(t) * (( FLOOR( ABS(t), 1) ^ 7) + 1/( FLOOR( ABS(t), 1) ^ 7))

  • @MrGeorge1896
    @MrGeorge1896 6 місяців тому

    I haven't seen the video yet and won't solve it now but as we all have seen your previous video with x^5 + 1 / x^5 it is the easiest way to reuse the solutions for x^3 and x^5 we found there and use the binomial expansion of (x + 1 / x) ^ 7.
    Reusing already achieved solutions is not cheating but an economical way to deal with it. 😊
    Haha just watched the video and laughed out loud when you called it cheating. As if you had read my mind 😁

  • @scottleung9587
    @scottleung9587 6 місяців тому

    Got it!

  • @johnstanley5692
    @johnstanley5692 6 місяців тому

    Already a series for z(n)= (X^n+1/X^n): z(n+1)=z(n)z(1)-z(n-1) & z(2n)=z(n)^2-2. also z(0) = 2.
    Hence f(z(1)) = z(1)*(z(1)^6 - 7*z(1)^4 + 14*z(1)^2 - 7)

  • @phill3986
    @phill3986 6 місяців тому

    😊🎉😊👍👍👍😊🎉😊