Harvard University Admission Simplification Test! | ✍️🖋️📘💙

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 15

  • @ManojkantSamal
    @ManojkantSamal 2 дні тому +1

    Respected Sir, Good evening.. Nicely solved

    • @superacademy247
      @superacademy247  2 дні тому

      I appreciate you watching! 🤩🥰💕Thanks for your support 🙏💕💯

  • @紫瞳-w6t
    @紫瞳-w6t 2 дні тому +1

    0. question analysis: this is a calculator not allowed question. There must be 1 or more ways can extremely simplify the qustion.
    1.x^6 -1 = (x-1)(x^5+x^4+x^3+x^2+x+1) => (x^5+x^4+x^3+x^2+x)= [(x^6 -1)/(x-1)]-1, let x=27.
    2. Ans= [(27^6 -1)/(27-1)]-1=[(3^18 -1)/26]-1=[(9^9 -1)/26]-1, this is simple enough to calculate directly.
    3.9^9 can calculate directly or solved by (x-1)^n = C(n,0)x^n - C(n,1)x^n-1 + C(n,2)x^n-2 - C(n,3)x^n-3......,x=10, n=9

    • @superacademy247
      @superacademy247  2 дні тому

      Thanks for sharing your method. This is a nice alternative to the approach in the video! 💕🥰💕💪

  • @venugopalramachandran6766
    @venugopalramachandran6766 2 дні тому +1

    The expression is the same as 27^6 - 1/27-1...this is (27^3 -1) (27^3+1)/27-1. The numerator can further be factories using difference and sum of cubes formula

    • @superacademy247
      @superacademy247  2 дні тому

      Thanks for sharing your alternative approach to solving this problem! 🔥🔥✅💕

  • @TonyFisher-lo8hh
    @TonyFisher-lo8hh День тому

    Standard elementary math form, called a geometric series.

  • @НеллиПшено
    @НеллиПшено День тому

    Используем формулу суммы членов геометрической прогрессии.
    b1=27
    b5=27^5
    q=27
    S=(27^6-27)/(27-1).
    Good luck!

  • @ManojkantSamal
    @ManojkantSamal 2 дні тому

    ^=read as to the power
    *=read as square root
    As per question
    27^5 +27^4+27^3+27^2+27^1
    Add 1 to the above statement
    1+27+27^2+27^3+27^4+27^5
    =(1+27)+(27^2+27^3)+(27^4+27^5)
    =(1+27)+27^2(1+27)+27^2(1+27)
    =(1+27){1+27^2+27^4}
    =28[1+(2×27^2)+(27^2)^2}-(27^2)]
    =28[(27^2+1)^2-(27^2)]
    =28{(729+1)^2- 729}
    =28{(730^2)-729}
    =28{532900-729}
    =28×532171
    =14900788
    Hence the conclusion will be
    14900788-1=14900787..(because 1 is added to the statement earlier)

  • @John-dp8oh
    @John-dp8oh День тому

    Easier just to calculate conventionally. The method used complicates rather than simplifies.

  • @tharanathakula3588
    @tharanathakula3588 День тому +1

    this problem and the solution is available in MECHANICAL ENGINEERS HAND BOOK

    • @superacademy247
      @superacademy247  День тому

      I appreciate you sharing your insights! 💯🤩🙏✅

  • @freebeerecords
    @freebeerecords День тому

    The expression is the same as 111110 base 27, which is 14,900,787 base 10 as any elementary student should know. How is this even a question??? 😂 jk, happy holidays and thanks for a great vid!

  • @遠傳五華
    @遠傳五華 День тому

    Let equal.= K and multiple both side with (27-1). Then use formula, we could convey it as following.
    27^6-1^6=26K
    (27^2)^3-1^3=26K
    729^3-1^3=26K
    (729-1)(729^2+729+1^2)=26K
    728(729*730+1)=26K
    28(532171)=K
    14900788=K

  • @JamesKang95
    @JamesKang95 День тому

    27^2*(27^3+27^2)+(27^3+27^2)+27=(27^3+27^2)(27^2+1)+27
    =(19683+729)(729+1)+27
    =20412*730+27=14,900,787