Approximate Nearest Neighbors : Data Science Concepts

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 60

  • @ScaredCrows4
    @ScaredCrows4 3 роки тому +19

    Wow you have no idea how much i needed this for my current work project. Thanks as always for a fantastic explanation

  • @vineethgudela2033
    @vineethgudela2033 Рік тому +1

    I have implemented ANN on my own after watching your video. Thanks for the great explanation ritvik

  • @csbanki
    @csbanki 2 роки тому +2

    This is perfect!
    I'm so sick of all these fancy literatury stuff from professors all over the world who can only communicate through differential equations. THIS is how it should be explained. Thank you good sir!

  • @anonim5052
    @anonim5052 Місяць тому

    I am preparing for pinterest interview! Thank you! It was very helpful!

  • @zivleibowitz9846
    @zivleibowitz9846 Рік тому

    OMG. I hope all my lecturers will explain that clearly and intuitively. Thankss

  • @Septumsempra8818
    @Septumsempra8818 3 роки тому +3

    Both formats are cool

  • @rockapedra1130
    @rockapedra1130 Рік тому

    You have a very clear but not too wordy style. *SUBSCRIBED*

  • @ctRonIsaac
    @ctRonIsaac 2 роки тому

    The lesson was clear and paper can be easier for you to control and work with. So this is fine. Thank you for the lesson!

  • @aZnPriDe707
    @aZnPriDe707 2 роки тому +2

    Clear explanation and very resourceful!

  • @jiayangcheng
    @jiayangcheng 6 місяців тому

    Thank you so much sir this explanation shows your exceptional ability to teach. So enlightening!

  • @hannahnelson4569
    @hannahnelson4569 5 місяців тому

    This is brilliant! Thank you so much for showing us this method!

  • @randall.chamberlain
    @randall.chamberlain Рік тому

    Mate you really know how to explain things. Thanks for your time and dedication.

  • @seyedalirezaabbasi
    @seyedalirezaabbasi Рік тому

    This format is better. Thanx.

  • @Mylife9929p
    @Mylife9929p Рік тому

    Thank you so much for the simple and clear explanation with examples!

  • @Crimau12000
    @Crimau12000 Рік тому

    Thanks for sharing such a detaild and thorough explanation!

  • @doronbenchayim8526
    @doronbenchayim8526 3 роки тому +2

    THIS WAS AMAZING!!!!!!!!!!!!!!!

  • @PhilipMavrepis
    @PhilipMavrepis 3 роки тому +6

    Pretty good explanation but you never showed what happens if the number of K you are searching for is bigger than the number of points in the specific area.
    For example let's say you have a new point in R4 which has 3 points and you are searching for 4-NN for that point.
    Thank you again for this video, really liked it

    • @Han-ve8uh
      @Han-ve8uh Рік тому

      Doesn't answer your question directly, but in FAISS IVF index, if k is more than number of items in a cell, it returns -1 id for the extra required neighbors, solution is to increase default nprobe=1 to probe more cells.

  • @monalover3758
    @monalover3758 Рік тому

    Very clear explanation! I think I got it in one pass! Pace is good. Thanks! (PS. the paper format is fine!)

  • @RetropunkAI
    @RetropunkAI Рік тому

    best explanation ever. thank you

  • @marcosricardooliveira3790
    @marcosricardooliveira3790 Рік тому

    I really like this format for this kind of explanation
    Like explainnig how a technique works
    very good vid, thanks

  • @siddharthvij9087
    @siddharthvij9087 4 місяці тому

    Excellent Video

  • @KeithGalli
    @KeithGalli 2 роки тому +1

    Thanks! Good vid :)

  • @oddtraveller
    @oddtraveller 2 роки тому

    Greatly explained

  • @vinnythep00h
    @vinnythep00h 5 місяців тому

    Great explanation!

    • @ritvikmath
      @ritvikmath  5 місяців тому

      Glad it was helpful!

  • @dinuthomas4531
    @dinuthomas4531 Рік тому

    Very well explained!!

  • @zahrashekarchi6139
    @zahrashekarchi6139 2 роки тому

    well explained! thanks!

  • @alinajafi1528
    @alinajafi1528 2 роки тому

    Perfect explanation! Thanks :D

  • @nadiakacem24
    @nadiakacem24 Рік тому

    thank you very much, it was so helpful

  • @Shkedias
    @Shkedias 3 місяці тому

    Thank you😊

  • @ScottSummerill
    @ScottSummerill 3 роки тому

    I like it MUCH better. I found it sometimes overwhelming to be confronted with all the info and not yet have an explanation.

  • @loupax
    @loupax Рік тому

    I now wonder if this is a sensible algorithm for collision detection

  • @sarmale-cu-mamaliga
    @sarmale-cu-mamaliga 2 роки тому

    Really cool :O thank you

  • @mayapankhaj9124
    @mayapankhaj9124 8 місяців тому

    Thank you so much for a beautiful lesson. Reminded me of my elementary school days and how teachers used to teach back then.

  • @jamemamjame
    @jamemamjame Рік тому

    thank you very much 🙏🏼

  • @kanchansarkar7706
    @kanchansarkar7706 2 роки тому

    such a great explanation! Wonder do you also have a similar video for HNSW? Thanks!

  • @qwerty22488
    @qwerty22488 2 роки тому

    Thanks for this excellent video! Is there a poplar library that helps to experiment with ANN on local machine for a small set of data?

  • @haneulkim4902
    @haneulkim4902 2 роки тому

    Thanks for a great video! One questions, @9:23 new point we check if given point is below or above the blue line. The way you recognize whether point is above or below is by calculating distance between (point, 1) and (point, 9) ?

  • @brockobama257
    @brockobama257 9 місяців тому

    3:56 I thought that a kdtree can search nearest neighbor in logn and delete or add a point in logn so k nearest neighbors could be considered klogn which is less than n

  • @rockapedra1130
    @rockapedra1130 Рік тому

    Paper is better, I think. Moving the papers around is like zooming without moving the camera.

  • @borknagarpopinga4089
    @borknagarpopinga4089 3 роки тому

    What's your qualification? Somehow I cannot find any information about your education etc. Awesome videos by the way, a lot easier to understand than what every professor tries to explain.

  • @RishiRajKoul
    @RishiRajKoul Рік тому

    How would we determine that a point is above and below a line using code ?

  • @stevengusenius7333
    @stevengusenius7333 2 роки тому

    Great video as always Ritvik.
    Am I correct that building the tree is an O(N) operation? That is, if I have only one new data point and haven't yet constructed the tree, will this still save any time over the exhaustive method?
    If not, then I presume building a forest would imply some break even point.
    Thanks.

  • @JayRodge
    @JayRodge Рік тому

    I still don't understand how do you classify the new point? region wise or is there any other method?

    • @monalover3758
      @monalover3758 Рік тому

      Here is what I think: each region has two points. So use a metrics (e.g. distance) from this given new point to the begin and to the end point and go with the closer one. The closeness can be Euclidean distance, or Cosine distance, or some other metrices.

  • @X_platform
    @X_platform 3 роки тому

    Is ANNOY using Voronoi ?

  • @djangoworldwide7925
    @djangoworldwide7925 Рік тому

    Such a nice recursive challenge. anyone have an idea how to define a function to recursivley solve this kind of algorithm, given a creiteria of maximum points?

  • @atwork22
    @atwork22 8 місяців тому

    Looks like a sort of a binary search

  • @raunaquepatra3966
    @raunaquepatra3966 3 роки тому +9

    "Lowest Complexity for Knn is O(n)" is not True!!
    Using kd-tree the complexity becomes
    O(log n).