ODE with Dirac Delta

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 17

  • @md2perpe
    @md2perpe 14 днів тому +3

    Multiply the differential equation by e^(-t). After that the left hand side can be written as (e^(-t)y)''. The right hand side simplifies to e^(-5)δ(t-5).
    Then you only have to take antiderivative a couple of times, knowing that δ = H' and H = (tH)'.
    Before using the initial conditions, you get y(t) = (t-5) e^(t-5) H(t-5) + At e^t + B e^t. Initial conditions make A = B = 0.

  • @jagatiello6900
    @jagatiello6900 13 днів тому +1

    Oh, this one brings back memories of the theory of systems and signals at uni.
    Nice video Peyam. Have a great 2025!

  • @giorgioripani8469
    @giorgioripani8469 8 днів тому

    Amazing derivation Dr.

  • @renesperb
    @renesperb 7 днів тому

    This example nicely shows the strength of the L-transform for these types of problems .

  • @neilgerace355
    @neilgerace355 14 днів тому +2

    7:57 Number 5 is alive!

  • @erfanmohagheghian707
    @erfanmohagheghian707 14 днів тому +1

    Of course variation of parameters can be used to solve this! Let me know if you couldn't figure it out.

  • @nimaalz4513
    @nimaalz4513 14 днів тому +1

    are you from Tabriz ?? pls Answer :)

  • @BrendanLawlor-m5n
    @BrendanLawlor-m5n 14 днів тому

    Hey Dr have do you know of Bell Polynomials for repeated differentiation of the compound function f(g(x)) called the Faa di Bruno formulas generalísimo the chan rule to higher derivatives . Maybe do a video on them , they are beautiful

  • @Happy_Abe
    @Happy_Abe 13 днів тому

    What’s the U function called?

    • @PedroHauy
      @PedroHauy 13 днів тому

      Heaviside step function

    • @Happy_Abe
      @Happy_Abe 13 днів тому

      @ oh thanks I’ve seen that with an H not a U