Word Embedding Explained and Visualized - word2vec and wevi

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 101

  • @tingxiwu3749
    @tingxiwu3749 4 роки тому +25

    RIP bro. Really sad that we've lost a talent like you. Your paper is now really helping lots of us and thanks for your contribution.

  • @kencheligeer3448
    @kencheligeer3448 5 років тому +7

    Thanks mate! This is the best explanation for original Word2vec. R.I.P, 一路走好.

  • @melaniebaybay7006
    @melaniebaybay7006 8 років тому +32

    Amazingly well done! Your paper, this talk, and the wevi tool have made it MUCH easier for me to understand the word2vec model. You definitely succeeded in your goal of explaining this topic better than the original authors. Thank you!

  • @Iniquitous2009
    @Iniquitous2009 6 років тому +18

    RIP dear stranger, you've made it so much simpler for all of us.

  • @jiehe9673
    @jiehe9673 8 років тому +1

    I have read your paper and after watching your presentation, I've pretty much understood this model. Thanks!

  • @kavitapandey964
    @kavitapandey964 8 років тому +3

    Buddy, you are a saviour..this is all I needed to get started for my project! God Bless!

  • @shivendraiitkgp
    @shivendraiitkgp 8 років тому +6

    Just 3 minutes into the lecture, it has already caught my attention and cleared off my sleepiness. :D

  • @plamenmanov2694
    @plamenmanov2694 7 років тому +6

    One of the most talented AI presentation I've seen, peaceful flight my friend!

  • @kaiyangzhou3503
    @kaiyangzhou3503 8 років тому +3

    Fantastic talk! You give me a more clear understanding of word embedding! Awesome!

    • @xinrong5074
      @xinrong5074  8 років тому +2

      Kevin Zhou Thanks. Glad it helped!

    • @tongwei3527
      @tongwei3527 8 років тому +1

      Hi, I am a master student at Nanjing U. and I'm interest in word embedding and such NLP technologies. Can I have your wechat or other social media accounts? Looking forward to knowing you. Thanks.

    • @xinrong5074
      @xinrong5074  8 років тому

      Wei Tong 呃...直接发给我邮件就好啦。ronxin@umich.edu

  • @geoffreyanderson4719
    @geoffreyanderson4719 8 років тому +1

    Thank you for this revealing talk. Good takeaways!

  • @rck.5726
    @rck.5726 8 років тому +1

    Superb talk, also read your paper before watching this, thanks for helping people understand this great work.

  • @rachel2046
    @rachel2046 2 роки тому +4

    Couldn't help imagining how much he would be able to contribute to the world of NLP if he's still alive...

  • @里里-x7r
    @里里-x7r 5 років тому +2

    R.I.P, thank you for your contribution

  • @inaqingww
    @inaqingww 4 роки тому +2

    RIP, Thank you for your contribution

  • @pitbullvicious2505
    @pitbullvicious2505 8 років тому +1

    Excellent presentation! I had kind of got the basics of w2v and applied them in a couple of problems and noticed how well they work, but never found a paper or presentation that would really explain what w2v does and how, so that I'd understand. This presentation did. Thank you!

    • @xinrong5074
      @xinrong5074  8 років тому +2

      Pitbull Vicious thank you!

  • @thetawy14
    @thetawy14 6 років тому +2

    Oh my god... I came back to this video because of a great explanation...But now after reading comments, I realize that the tragedy already happened the first time when I was watching this :( RIP

  • @maoqiutong
    @maoqiutong 7 років тому

    Many thanks for your great presentation and your perfect website!

  • @martinkeller9562
    @martinkeller9562 8 років тому

    Really well done, such an improvement over the explanation in the original paper!

    • @xinrong5074
      @xinrong5074  8 років тому

      thanks!

    • @xinrong5074
      @xinrong5074  8 років тому +2

      i would add that in no way this is a replacement of the explanation of the original paper... the original one(s) was written for researchers in the field - to people who've done neural net, esp neural language modeling for a while, that original paper was a joy to read and offer a lot more insights on the history and competitors of the model

    • @martinkeller9562
      @martinkeller9562 8 років тому

      True. I'm not saying that it's a bad paper in any way, but I do feel that it could have benefitted from being more explicit or more detailed at some points. In particular, the negative sampling objective function could have been discussed more. Being familiar with neural networks, but not neural language modelling in particular, it took me quite a while to work out what's really happening in word2vec.

    • @xinrong5074
      @xinrong5074  8 років тому +1

      agreed.

  • @coffle1
    @coffle1 8 років тому +1

    Great talk! Also, I appreciate the time taken out to put in subtitles! The volume got pretty low at times, and was glad I could rely on the subtitles.

  • @BrutalGames2013
    @BrutalGames2013 7 років тому

    Awesome job! Really straight forward explaination. Thank you very much! :)

  • @yoojongheun9328
    @yoojongheun9328 8 років тому +4

    Is that a typo at 22:15 (the 2nd chain rule part)? or I am not following the derivation?
    - on the video and the paper dE/dw'_ij = (dE/du_j)(u_j/dw'_ij)
    - shoud it be? dE/dw'_ij = (dE/du_j)(du_j/dw'_ij)

    • @xinrong5074
      @xinrong5074  8 років тому +2

      +Yoo Jongheun You are absolutely correct. I will correct this in the paper. Thanks.

  • @JadePX
    @JadePX 8 років тому

    Most impressive... And excellent presentation.

  • @brucel9585
    @brucel9585 3 роки тому +3

    I know this channel will not longer update anymore, RIP bro, sadly to know you in this way, to know you better from your contribution from youtube, thanks

  • @jishada.v643
    @jishada.v643 8 років тому

    Wawoo.. That was a really great talk..

  • @kunliniu5883
    @kunliniu5883 6 років тому +1

    Awesome talk! Thank you and RIP.

  • @dr_flunks
    @dr_flunks 8 років тому +1

    Hey Xin, I've been studying deep learning for about 6 months. I think your slide's description of backprop is the best i've seen yet. I think you've summarized it as concisely as possible. I think the math finally 'clicked.' Great job. Just for others, i don't believe you called it out in the video but it's the chain rule that allows you to work backwards toward the input layer around 16:07, correct?

  • @chetansaini1985
    @chetansaini1985 6 років тому

    Very nicely explained.....

  • @SleeveBlade
    @SleeveBlade 6 років тому

    Very well done!! Good explanation

  • @girishk14
    @girishk14 8 років тому

    Great video! By far the best explanation of Word Embeddings so far! Xin Rong - do one for GloVe too!

  • @hungynu
    @hungynu 6 років тому

    Thank you so much for clear explanation.

  • @suadrifrasan2726
    @suadrifrasan2726 3 роки тому

    Wonderful job @Xin Rong

  • @SanghoOh
    @SanghoOh 7 років тому

    Nice tutorial. Thanks.

  • @ibrahimalshubaily9520
    @ibrahimalshubaily9520 5 років тому

    Outstanding, thank you Xin.

  • @maryam_nn
    @maryam_nn 8 років тому

    Thank you so much for the video! :)

  • @pankaj6663
    @pankaj6663 7 років тому

    Interesting Talk ,... Thanks :)

  • @RedShipsofSpainAgain
    @RedShipsofSpainAgain 7 років тому

    Great presentation Xin. Very informative. Next time, I'd suggest ensuring the volume is adequate. I've got my volume turned up to 100% and it's barely audible.

  • @silentsnooc
    @silentsnooc 8 років тому

    Thank you for this video and especially for this awesome paper. What I don't fully understand though is why and/of if the input words do have to be one-hot encoded. What if I'd use a different representation. Let's go crazy and say I use a pre-trained word2vec model with an arbitrary embedding size. What if I used these as inputs in order to learn the weights?

  • @yingli2681
    @yingli2681 8 років тому

    Awesome video! Just one question about the PCA graph. Do you look at the variance of the first two PCs explains? My concern is if the first two PCs explains little about the variance, the graph no longer makes much sense right?

    • @xinrong5074
      @xinrong5074  8 років тому

      I think that is a great point! For inputs like
      a|b,a|c,c|a,c|b,b|a,b|c,d|e,e|d
      the PCA would make little sense.

  • @cbetlana7733
    @cbetlana7733 8 років тому

    Awesome talk! I'm just starting to learn about this stuff and was wondering if the talk you refer to (during the "Training a Single Neuron" slide) could be found online somewhere?

  • @高亚红-n8m
    @高亚红-n8m 8 років тому +1

    还是用国语交流,更亲切!非常感谢,真的是很好的工作!

  • @homerquan
    @homerquan 8 років тому

    Do your work will be extent to sentences (sen2vec?). e.g., Input a sentence and get its intention?
    I tried to connect you on linkedin. Glad to know more about each other.

  • @RajarsheeMitra
    @RajarsheeMitra 8 років тому

    You said vector of 'drink' will be similar to that of 'milk' after training. That means vectors of context and target will get similar. Then what about the similarity of target words that share similar context ?

    • @anyu8109
      @anyu8109 8 років тому

      I think they would be similar, since we have similar vectors to predict the targets.

  • @qijinliu4024
    @qijinliu4024 7 років тому +4

    黄泉路上,一路走好。RIP.

    • @MrChaos987
      @MrChaos987 6 років тому

      Qijin Liu 希望他安好吧,不过飞机到底什么原因事故的

  • @anyu8109
    @anyu8109 8 років тому

    Good questions!!

  • @afrizalfirdaus2285
    @afrizalfirdaus2285 8 років тому +1

    thank you so much, but i have i question. if i have 10K words, then i must training all the 10K words one-by-one?
    and what is the mean of context? i dont understand what is the context. is that a document or what?

    • @xinrong5074
      @xinrong5074  8 років тому +1

      Do you mean you have 10K tokens in the corpus? Yes, you will have to train them one-by-one, and maybe multiple iterations for better performance. The context is also a word, or in CBOW a bag of words.

    • @afrizalfirdaus2285
      @afrizalfirdaus2285 8 років тому

      wow oke i see. actually i want to use this method for bahasa indonesia but there are no published pretrained data in the internet so i must to create it by my self.
      Do i must create the 10K data training like you do in your wevi demo in form "Training data (context|target):" manually one-by-one? is there any method to create the list of data training?
      i've read your paper and there is chapter "multi-word context". can you give me an example what context has multi word? is it like word "clever" and "smart" in one context?

    • @xinrong5074
      @xinrong5074  8 років тому

      No. You don't have to. My demo is just for illustration purpose. The word2vec package comes with preprocessing functionality to create context|target pairs from a plain text file.
      Multi-word context means considering multiple words in the same sentence as a single context. E.g., using CBOW model, in the sentence "The quick brown fox jumps over the lazy dog." For the word "jumps", assuming window size is 3, then the context is quick+brown+fox+over+the+lazy... i.e., a multi-word context.

    • @afrizalfirdaus2285
      @afrizalfirdaus2285 8 років тому

      oh oke i understand what is the context
      where can i get the package? hmm but if i want to code the word2vec by my self without the package, how to create the 10K data context|target pair?
      i'm so sorry for asking many question to you :D

    • @xinrong5074
      @xinrong5074  8 років тому +1

      www.tensorflow.org/versions/r0.10/tutorials/word2vec/index.html and github.com/dav/word2vec

  • @georgeigwegbe7258
    @georgeigwegbe7258 6 років тому

    Thank you.

  • @henrylee19840301
    @henrylee19840301 5 років тому +1

    R.I.P. Thank you bro.

  • @martin9669
    @martin9669 3 роки тому +1

    RIP Xin Rong aka Saginaw John Doe

  • @quynguyen9867
    @quynguyen9867 8 років тому

    thank u so much!

  • @zilinlee3742
    @zilinlee3742 6 років тому +1

    Big thank you & RIP

  • @Amapramaadhy
    @Amapramaadhy 7 років тому +10

    RIP. Gone too soon

    • @abaybektursun
      @abaybektursun 7 років тому

      Wait, WTF?

    • @geraq0
      @geraq0 7 років тому

      Dear Lord. I didn't understand what you meant until I googled it. That's terrible.

    • @arsalan2780
      @arsalan2780 7 років тому

      what really happened

    • @Iniquitous2009
      @Iniquitous2009 6 років тому

      www.dailymail.co.uk/news/article-4900486/Wife-long-missing-PhD-student-wants-declared-dead.html

    • @josephrussell6786
      @josephrussell6786 6 років тому

      Sad.

  • @blackblather
    @blackblather 9 місяців тому

    Thank you and RIP

  • @Skandawin78
    @Skandawin78 5 років тому +1

    Why RIP? What happened to him?

    • @bertmagz8845
      @bertmagz8845 5 років тому +1

      m.huffingtonpost.ca/2017/03/23/xin-rong-plane-crash_n_15567112.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAABEjoMpeN7b9fsotLlieE5ozPCYsNlKJwGUd2_KK8Gw0w9lCE3owMkmmqunR_E-033vq8FbU3CmIaOuDdnzJjaLRV_nktW5ZCyqagEbuefYWPfm2OenSZTYgGi5nPslGolgiy3qHBLdLIi-DT4pecXRKW-S777TsCRb-EEuGjk40

    • @hsun7997
      @hsun7997 4 роки тому

      He jumped out of his own plane

    • @Skandawin78
      @Skandawin78 4 роки тому

      @@bertmagz8845 hmm the report says how and when he exited is a mystery. Did they ever find his body?

    • @dianezatanna9676
      @dianezatanna9676 3 роки тому

      @@Skandawin78 No his body has never been found.

  • @Optimus_Tesla
    @Optimus_Tesla 5 років тому

    RIP brother

  • @vespermurtagh6547
    @vespermurtagh6547 7 років тому +1

    I strongly suggest this brain training game”nonu amazing only” (Google it) for anyone who would like to increase and sharpen their brain. So I have been making use of this game a lot for brain training and it works I`ve been checking more things I remember where I left most of my things.

  • @taoxu798
    @taoxu798 5 років тому +1

    Thanks and RIP.

  • @jihu9522
    @jihu9522 7 років тому +1

    RIP.

  • @michaelyin8550
    @michaelyin8550 5 років тому +2

    RIP and big thanks!

  • @bettys7298
    @bettys7298 4 місяці тому

    RIP!

  • @shg7709
    @shg7709 3 роки тому

    RIP bro

  • @BrutalGames2013
    @BrutalGames2013 7 років тому +1

    RIP

  • @Alex_Eagle1
    @Alex_Eagle1 3 роки тому

    R.I.P

  • @sinnathambymahesan1268
    @sinnathambymahesan1268 5 років тому

    Very poor sound quality???

  • @amantandon2802
    @amantandon2802 5 років тому

    Volume too low even my speaker didn't helping me

  • @anyu8109
    @anyu8109 8 років тому

    haha, you are so funny.

  • @刘云辉-p7h
    @刘云辉-p7h 7 років тому

    牛逼!

  • @WahranRai
    @WahranRai 3 роки тому

    Bad quality of video (sound)

  • @jishada.v643
    @jishada.v643 8 років тому

    Wawoo.. That was a really great talk..

  • @samuel-xr4bi
    @samuel-xr4bi 6 років тому +1

    RIP