Coupled Pendulum (minus the bagpipe music)

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 37

  • @KoshyGeorge
    @KoshyGeorge 9 років тому +74

    The lack of bagpipe music really helps

  • @jaredaitken1260
    @jaredaitken1260 4 роки тому +27

    Great video! You know what it's missing though? Some epic bagpipe background music

    • @DanRussellPSU
      @DanRussellPSU  4 роки тому +11

      thanks! that actually made me laugh . . . if only there was a version somewhere with some epic jazz bagpiper playing "swing low, sweet chariot"!

  • @victorpaesplinio2865
    @victorpaesplinio2865 4 роки тому +3

    It is completely pleasant to solve the differential equations, plot the graph and watch your result in a real thing!
    Thank you! It made the things easier to grasp

  • @suhanijain1404
    @suhanijain1404 2 роки тому +1

    Best video on UA-cam for coupled oscillators😊😁

  • @Rosalies_
    @Rosalies_ Рік тому

    The third mode is a really good example of a nontrivial solution, for diff eq motivation. The mode makes sense, but you can’t confirm it until you see it in math or empirically. Very nice

  • @zenvir1680
    @zenvir1680 7 років тому +1

    Thanks for adding this noiseless version of video.

  • @BGFutureBG
    @BGFutureBG 2 роки тому

    Needed this for my Game Physics course. Thanks!

  • @theo5council979
    @theo5council979 8 місяців тому

    I haven't seen the original but can someone edit the bagpipes back in, I think it could help

  • @parshvpatel9644
    @parshvpatel9644 3 роки тому

    Sir can you show two double pendulums released from similar angle and in similar state. Thay how it goes chaotic

  • @Felks60
    @Felks60 6 років тому +1

    There seems to be an exponential decay to the oscillation of one of the masses in the coupled motion whilst it trades the amplitude of motion and energy. Could this behaviour be described mathematically as an exponentially damped sinusoidal wave that recomposes itself after an ever-decaying amount of cycles? .

    • @DanRussellPSU
      @DanRussellPSU  6 років тому +2

      the "decay" is not exponential . . . instead, the amplitude of each pendulum's oscillation is a cosine function, with the two pendulum cosine functions being 90 degree out of phase. The amplitude of one of the pendulums looks like xA(t) = Xo Cos( (w1+w2)*t/2)*Cos( (w1-w2)*t/2), where w1 and w2 are the two natural frequencies of the 2-dof system. The motion is a combination of the average frequency (the swinging oscillation) and the difference frequency (the slower exchange of energy). Here is an animation of the coupled motion, with a graph of what each mass is doing as a function of time: www.acs.psu.edu/drussell/Demos/coupled/coupled.html

  • @abdeljalilpr2033
    @abdeljalilpr2033 7 років тому +2

    ma shaa Allah..thank you

  • @PaulDeBelder
    @PaulDeBelder 5 років тому +1

    Disliking bagpipe music? How is it possible... By the way rnnnmt, it's bagpipe music, not "noise"

  • @SCRedstone
    @SCRedstone 7 років тому +1

    Verifying if MinutePhysics was correct. Damn was he right.

    • @DanRussellPSU
      @DanRussellPSU  7 років тому +1

      well -- he is kind of right, but not completely. The coupled motion is NOT a superposition of the two natural modes of the system. Instead, it is the result of a special, specific initial condition situation where both masses are initially at rest with one mass at its equilibrium and the other mass displaced away from equilibrium.

  • @Vaibhav_Vaishnav_
    @Vaibhav_Vaishnav_ 4 роки тому +1

    m from india n u explain s very well

  • @tariqulislam2512
    @tariqulislam2512 9 років тому +1

    Hello, I'm using parts of this video in making my video about coupled oscillator.
    I am a student of BUET.
    I have made a Javascript based animation that mimics this spring coupled pendulum.
    I hope you are okay with that.

    • @korigamik
      @korigamik 3 роки тому

      Can you provide us the source code or a demo for your program?

  • @jamesreynolds2190
    @jamesreynolds2190 8 років тому

    Thanks and how could I use that in a simple audio project?

  • @51T4
    @51T4 3 роки тому

    Whats the difference between it being released from a displaced position and from an equilibrium position?

    • @DanRussellPSU
      @DanRussellPSU  3 роки тому

      If both masses were released from their equilibrium positions, nothing would happen at all. In the equilibrium condition, the net force on the system is zero, and there would be no acceleration, and the system would remain at rest with no oscillation. At least one of the masses must have an initial displacement from equilibrium in order for oscillation to occur. The special "coupling" case shown in this demonstration occurs when one mass is initially displaced from equilibrium while the other is at rest at equilibrium.

    • @51T4
      @51T4 3 роки тому

      @@DanRussellPSU Thank you so much! I'm doing this for my physics project and that helped a lot.

  • @lioneloddo
    @lioneloddo 9 років тому

    I was thinking if it would be possible to carry out an experiment showing an amazing result predicted by the SEA : Statistical Energy Analysis. If the excitation is random on both pendulum then we sould observe irreversibility of energy. ..

  • @erickcruz3018
    @erickcruz3018 3 роки тому

    What is the lenght and the constant k of the springs?

  • @aryanthakur532
    @aryanthakur532 2 роки тому

    I need the bagpipe inside me

  • @sainekbag5404
    @sainekbag5404 6 років тому

    If the calculation here being will be perfect

  • @ma5t
    @ma5t 7 років тому +2

    @minutephysics

  • @CanONuke
    @CanONuke 3 роки тому

    Where is the bagpipe version?

    • @DanRussellPSU
      @DanRussellPSU  3 роки тому

      It's on my UA-cam Channel . . . ua-cam.com/video/YyOUJUOUvso/v-deo.html

  • @xjellygu
    @xjellygu 2 роки тому

    😍😍😍😍

  • @bostangpalaguna228
    @bostangpalaguna228 4 роки тому

    I prefer noise to bagpipe music

  • @danylosousaoliveira5197
    @danylosousaoliveira5197 5 років тому

    Muito legal!

  • @xjellygu
    @xjellygu 2 роки тому

    🔜

  • @xjellygu
    @xjellygu 2 роки тому

    Cute😍🥰😘⁉️

  • @xjellygu
    @xjellygu 2 роки тому

    Sorry😣