12b Geostatistics Course: Kriging

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 66

  • @binyang7362
    @binyang7362 2 роки тому +10

    1:20 Spatial estimation
    8:00 Weighting scheme
    10:00 derivation of Simple Kriging
    15:27 Kriging definition
    16:00 Linear system for Simple Kriging
    17:50 Properties of Simple Kriging
    25:45 Excel Demo
    31:35 Ordinary Kriging
    32:45 Kriging: Summary

  • @joshmachine777
    @joshmachine777 5 років тому +31

    Sir I appreciate you posting such valuable lectures for public learning. Kudos to you.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому +14

      My pleasure! I love being a professor and getting to help so great many people on their scientific journey! Thank you, Michael

  • @mathiasberggren9970
    @mathiasberggren9970 4 роки тому +4

    The right amount of math to make it applicable, but not so much that it remove the focus on what is happening. Thanks a lot for putting this quality content up on youtube!

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому +1

      Thank you Mathias for the feedback. I love math, but I love accessible education even more! I'm always trying to balance! I'm glad to hear that the content is useful!

  • @carloscampoverde9461
    @carloscampoverde9461 2 роки тому

    Thanks professor I was lost until I saw your videos , greetings of a Ecuadorian from the Netherlands

  • @zane.walker
    @zane.walker 2 роки тому

    Excellent lecture! I have used Kriging for more than a decade but did not have the insights that you presented in your 36 min lecture. Also, the excel spreadsheet very useful in getting an intuitive understanding of the Kriging method. Much appreciated!

  • @kalelalves
    @kalelalves 3 роки тому

    You are a life saver. I understood more from this video than all articles I read combined.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  3 роки тому

      Now that is accessible! I'm glad to hear that that content is helpful, Kalebe.

  • @techguy6565
    @techguy6565 2 роки тому

    Thank you for your spreadsheet demonstration, it is much easier to understand an equation or an algorithm by playing around with the variable.

  • @renatojrfolledo5728
    @renatojrfolledo5728 4 роки тому +2

    Thank you very much for making this public, now I fully understand what Kriging is

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому

      That's what I'm talking about! I love to hear this. Isn't spatial data analytics awesome?

    • @renatojrfolledo5728
      @renatojrfolledo5728 4 роки тому +2

      Yes it is awesome! I watched all your lecture series on Data Analytics and Geostatistics from 1a Data Analytics Reboot: Statistics Concepts to the last. As a graduate student in environmental science with biological sciences as undergrad who has limited statistics and mathematical background, your videos and teaching materials are very helpful as they are easier to understand than papers/books which are also difficult to obtain. Thank you very much for your generosity in sharing your expertise to wannabe geostatisticians: your lecture materials (PDF format), videos, program codes in R and Python. I'm experienced in R but not in Python, but your Python workflows motivated me and now I can program in Python as well!

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому +2

      @@renatojrfolledo5728, thank you for sharing this. Now I'm totally stoked. This is why I do it! We are all one scientific community and more data analytics will improve science everywhere! Thank you, Michael

    • @khalidsalim1079
      @khalidsalim1079 2 роки тому

      @@GeostatsGuyLectures Only when magicians like you Explain it... Thank you, Sir.

  • @jorjasso
    @jorjasso 5 років тому +2

    Great lecture!!!. (correct me if I am wrong) the main assumption here is to have a signal noise representation of the signal f=m+e, then for predicting a new signal f*=m*+e*, kriging assumes that e*=sum_i a_i e_i = sum_i a_i (f_i-m_i) which gives the equation f*=sum_i a_i f_i + m*- sum_i a_im_i. Then weights a_i are founded by minimizing the variance with constraint sum_i a_i=1. (1) All this start by modeling e*=sum_i a_i e_i right?, 2) If we assume that f's are realization of Gaussian process, then f* can be estimated using equation 2.19 or 2.25 from this book www.gaussianprocess.org/gpml/chapters/RW.pdf i.e., the approach you are using wil be equivalent (equal) than the showed in that book, right?). Thank for sharing this video

  • @ahmedmohamedhelmiamer1204
    @ahmedmohamedhelmiamer1204 Рік тому

    Thank you for the great lecture i have a question about the percentage of measurement error in ARC map while using any kriging technique it assumes that the measurement error equals to 100% of the error. this negatively ompact the generated geostatistical layer contour lines and the values at the easured rain gauges are significantly impacted. when i use a zero percent error the generated geostatistical layers for both t universal and ordinary kriging are identical

  • @maxhofmann9851
    @maxhofmann9851 6 років тому +3

    Thanks a lot for this lecture! I think at 16:34, some of the indices in the third equation line should be u3 instead of u1

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому

      Great eye! You are correct. I'll get that corrected. I appreciate the great help! Michael

  • @hung144
    @hung144 6 років тому +3

    Very simple but very powerful demonstration. Excellent lecture. Could you please also discuss universal kriging?

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому

      That is a great idea, Nazmul. I mentioned universal kriging in class for completeness to expand on the idea that common kriging variants are driven by various stationarity assumptions. I'll put together some content on this. Aside, given my geoscience-oriented engineering background I generally prefer mapped trend models. Thank you, Michael

  • @abebayehutadesse7984
    @abebayehutadesse7984 6 років тому +3

    I found this lecture very interesting thank you for sharing.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому +2

      I try to keep it lively! The topic is fascinating. That's how I got pulled into it and never looked back. Thank you, Michael

  • @CK-vy2qv
    @CK-vy2qv 4 роки тому +2

    Anyone else noticed the ghost at 13:17? :)

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому +1

      Howdy Chronis, great catch! I should get someone in to look at that!

    • @CK-vy2qv
      @CK-vy2qv 4 роки тому +1

      @@GeostatsGuyLectures Haha - my best guess is that it was the dog :) BTW thanks for your videos, they are great!

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому +2

      @@CK-vy2qv, you are correct. That is Darby, my rescue dog! She likes to join in my recorded lectures. I'm glad that you are finding the content useful!

  • @nio837
    @nio837 2 роки тому

    I was wondering if you have posted something related to kriging neighborhood analysis?

  • @徐旻-b4o
    @徐旻-b4o 4 роки тому

    Thank you for your lecture! I think at 14:35 there should be a 2 in the second equation on the right side, hope I'm not mistaken.

  • @AdrianZhang-ch4hw
    @AdrianZhang-ch4hw Рік тому

    Hi Professor are you planning to introduce RBF in your class?

  • @ZhaoweiWang
    @ZhaoweiWang 2 роки тому

    Thanks a lot for the great lecture. Learning from this lecture that Kriging accounts for distance (i.e., in the lecture, increase/decrease weights if a sampling point is closer/further away from the unknown location) when assigning weights, would you still recommend to perform data declustering and calculate the weights for data? I just wonder if account for data closeness twice would be redundant? Thank you very much in advance!

  • @seomesoilresearchscientist
    @seomesoilresearchscientist Рік тому

    Hi Professor, I wanted to ask. Do you know any method I can use to run regression kriging on arcmap or which tool can I use?

  • @TonyTongWA
    @TonyTongWA 5 років тому +1

    Thanks, this is an amazing explanation + lecture content!

  • @tanveeralam3261
    @tanveeralam3261 2 роки тому

    thnk you sir for making such valuable contents available to us

  • @philippeflores5287
    @philippeflores5287 4 роки тому

    Great lecture !! I've noticed a small mistake at 14:17 : The indexes are C(u_i,u_j) instead of C(u_i,u_i) on the two equations !
    Thanks again I hope I'm not wrong

    • @徐旻-b4o
      @徐旻-b4o 4 роки тому

      I've noticed it too, I think you're right.

  • @yogenshres
    @yogenshres 2 роки тому

    Where can i get the spreadsheet sir??

  • @solimananwar9361
    @solimananwar9361 5 років тому +1

    Many thanks but do you have excell sheet for establishing krigiing

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому +3

      Howdy Solima, you're welcome and check out my ExcelNumericalDemos repository, I have simple kriging, indicator kriging and collocated cokriging by-hand. Hope this helps.

    • @solimananwar9361
      @solimananwar9361 5 років тому

      @@GeostatsGuyLectures many thanks for your help could you pls send me your email for some quiz

  • @badwolf489
    @badwolf489 3 роки тому

    Best lecture! Thanks a lot

  • @mosesadekoje3107
    @mosesadekoje3107 4 роки тому

    Great content sir, at 16:50 i noticed the third equation should be C(u3,u2) and C(u3,u3). I hope i'm not mistaken.

  • @mojtabamaghazei9843
    @mojtabamaghazei9843 5 років тому +1

    That' s gone be so viable.Thank a lot

  • @zhenzhang3451
    @zhenzhang3451 3 роки тому

    thank you sooooooo much professor!!!!!!!!!!!!!!!!!!!!!!thank you!!!!

  • @haroonkhanafridi127
    @haroonkhanafridi127 5 років тому +1

    How i interpret the kriging and kriging variance map?

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  4 роки тому

      Good question! Dr. Journel told us not to put kriging estimates in maps! They are the best estimates at each location, but jointly they are incorrect, because they do not honor the histogram nor the variogram. The kriging variance is the missing variance in kriging and a measure of uncertainty in the estimate.

  • @getinettafesetucho7999
    @getinettafesetucho7999 3 роки тому

    Thank you, indeed!

  • @WGLTubaman
    @WGLTubaman 3 роки тому +1

    Thank you.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  3 роки тому +1

      You're welcome, William. I hope the content is useful!

    • @WGLTubaman
      @WGLTubaman 3 роки тому

      @@GeostatsGuyLectures it may actually end up in my dissertation.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  3 роки тому

      @@WGLTubaman, cool! Cite it and the channel will be famous! Glad to see more folks finding the content! Good luck on writing, Michael

  • @nazmnovruzov7578
    @nazmnovruzov7578 5 років тому

    hello SIR
    THANKS SO MUCH FOR THIS LECTURE
    CAN YOU EXPLAIN FACTORIAL KRIGING PLZ

  • @xdsf3702
    @xdsf3702 6 років тому +1

    Cool mic. Great sound quality.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  6 років тому +1

      Thank you xdsf! I'm improving the quality over time. I'm thinking about getting a better camera.

  • @123pradipta
    @123pradipta 4 роки тому

    Thank you so much Geostatguy ..

  • @stellakountoupi5314
    @stellakountoupi5314 5 років тому +1

    What is data redundancy?

    • @stellakountoupi5314
      @stellakountoupi5314 5 років тому +1

      Never mind, it is data clustering. Thank you for your videos, they make geostatistics really enjoyable!

  • @bokadhaba2624
    @bokadhaba2624 3 роки тому

    wooow thank you for you share

  • @katyhessni
    @katyhessni 2 роки тому

    Thanks so much

  • @tundeolokodana435
    @tundeolokodana435 5 років тому +1

    Thank you so much for this lecture sir. I have really learned a lot from it. Please which of your works on Kriging can I cite in my publication?

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  5 років тому +1

      Howdy Olatunde, you could cite the book, Pyrcz and Deutsch, 2014, Geostatistical Reservoir Modeling, 2nd edition. I'm glad the content is useful to you, Michael

  • @baibaswatabhaduri7563
    @baibaswatabhaduri7563 5 років тому +1

    awesome!

  • @jumamagomba4907
    @jumamagomba4907 5 років тому

    thanks sir

  • @zahiralagheband3520
    @zahiralagheband3520 3 роки тому +1

    Hello sir. Thanks again for your great and straightforward content on geostatistics. I owe you a debt of gratitude. I had a question about ordinary kriging. In the 2nd half of this video on kriging theory by Luc Anselin, he said that in ordinary kriging the mean is constant and does not vary locally, there exists a stationary condition, and it is the case in a universal kriging model that the mean varies locally, while you said that in ordinary kriging we relax the stationarity condition:
    ua-cam.com/video/AoIUcE0vvq8/v-deo.html
    Am I right or this is some kind of misunderstanding?