Deep Operator Networks (DeepONet) [Physics Informed Machine Learning]

Поділитися
Вставка
  • Опубліковано 15 січ 2025

КОМЕНТАРІ • 19

  • @physicsanimated1623
    @physicsanimated1623 6 місяців тому +10

    Vivek here - absolutely loved the clear and simple explanations in this video! Keep them coming!

  • @mantas_birskus
    @mantas_birskus 5 місяців тому +3

    I think there is a small error - the paper was introduced in 2019, not 2023

  • @BobNugman
    @BobNugman 5 місяців тому +6

    Steve, a question: for a control problem, wouldn't we want an inverse operator -- one that maps the desired output to the control u(t)? Can the paper approach be adopted for that?

  • @ajdiwoasawd
    @ajdiwoasawd 4 місяці тому +2

    Experimentally I've found that stacking all inputs into a single vector and using a vanilla feedforward network is just as good as the deeponet (at least for simple problems)

  • @lauto1401
    @lauto1401 Місяць тому

    Hey, great explanation !
    Which paper are you talking about in 12:20 that proved the irrepresentability of chaotic systems

  • @jhuessy111
    @jhuessy111 5 місяців тому +1

    Awesome! Where can I find a simple sample implementation to build upon?

  • @ianmcewan8851
    @ianmcewan8851 5 місяців тому +6

    Apologies for the quibble. But could you post a link for the reference as it seems to be not quite correct. These guys are prolific, so searching on their names returns many papers, and JCP 378 (which is 2019) doesn't contain any papers by them.

  • @thomasplant4576
    @thomasplant4576 7 місяців тому +1

    Hi Steve, your lessons are excellent, thank you for your help! I was wondering when the set of videos on PINNs would be released since you mention them a lot in some of the videos on Loss Functions, for example.

  • @ramkumars2329
    @ramkumars2329 6 місяців тому

    clear videos professor!... a big fan of ur lectures from India

  • @KholofeloMoyaba
    @KholofeloMoyaba 5 місяців тому +3

    Very interesting looks like this could work well in control theory. I wonder if this is more generalisable than state based models in control. Also it could be interesting to further split ut into its own net as well.

  • @YaofuZhou
    @YaofuZhou Місяць тому

    I am very curious how this compares to reinforcement learning in arriving at optimal control, even for relatively simple scenarios such as a thermostat.

  • @Rififi50
    @Rififi50 5 місяців тому +1

    So essentially we are trying to learn the inverse differential operator?

  • @topamazinggadgetsoftrendin2916
    @topamazinggadgetsoftrendin2916 5 місяців тому +1

    Very interesting 🎉🎉one of your follower from Pakistan.you are my most favorite teacher ❤

  • @TheGmr140
    @TheGmr140 5 місяців тому

    Very interesting 😊

  • @droidcrackye5238
    @droidcrackye5238 5 місяців тому

    Is it possible to get a copy of slides, figures are so beautiful

  • @rito_ghosh
    @rito_ghosh 5 місяців тому

    DDSE video series was so good. It had explained code for everything. Would really love it if these videos came with code of implementation and training.

  • @rito_ghosh
    @rito_ghosh 5 місяців тому

    Where to find the code for this?

  • @daoyuzhang1648
    @daoyuzhang1648 5 місяців тому

    GLU?