Intro to Topology

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ •

  • @eliaswenner7847
    @eliaswenner7847 5 років тому +345

    "But it's not a very funny one" You can clearly hear the topologist who feels totally targeted

    • @tachytack
      @tachytack Рік тому +4

      holy shit linux tech tips

    • @Isa-tn7ex
      @Isa-tn7ex 6 місяців тому

      @@eliaswenner7847 me 😭

  • @mrtomato5132
    @mrtomato5132 7 років тому +449

    okay so basically geometry play doh

    • @DylanCVlogTV
      @DylanCVlogTV 3 роки тому +19

      This may be the best simple description.

    • @anawesomepet
      @anawesomepet 3 роки тому +24

      Except it's a play doh statue and the police are watching to make sure you don't break or glue it.

    • @td9250
      @td9250 3 роки тому +2

      That statement is stupid... but whatever.

    • @pro_crafter_12
      @pro_crafter_12 2 роки тому

      play doh but you can’t make or remove holes

    • @turquoisermain
      @turquoisermain 2 роки тому +1

      you summed up topology in 6 words

  • @EfeBaris21
    @EfeBaris21 8 місяців тому +32

    After 8 years UA-cam recommend me this video. I like the video.

  • @redaabakhti768
    @redaabakhti768 4 роки тому +34

    your voice + topology is extremely soothing to me

  • @theraccoonteurs
    @theraccoonteurs 3 роки тому +57

    Your narration, explanation, and animation work so great together! It was so clear to understand and also very fun. Thank you for this video!

  • @meshackamimo1945
    @meshackamimo1945 2 роки тому +8

    thank u for beautiful, concise explanations of TOPOLOGY concepts to persons who dont understand it! Much Thanks!

  • @stevenzheng5459
    @stevenzheng5459 2 роки тому +9

    Topology; studying surfaces in reference to holes
    Bottomology; studying holes in reference to surfaces

  • @venceremosallende422
    @venceremosallende422 5 років тому +12

    The topologist is the only one who will bite into his/her coffee mug, because it looks to him/her like the donut in his/her other hand

  • @arnabc
    @arnabc Рік тому +3

    Great hand-drawn homeomorphism animation!

  • @kristinlow1205
    @kristinlow1205 4 роки тому +7

    This is really well done, thank you.

  • @ayeariola
    @ayeariola 6 років тому +32

    I wished there were edible coffee mugs made out of donut dough.

  • @ABnormalZUCHINI
    @ABnormalZUCHINI 9 років тому +16

    I really love your videos, keep it up!

  • @FacelessProjects
    @FacelessProjects 6 років тому +4

    This is the exact video that I needed.

  • @chengatang4
    @chengatang4 8 років тому +48

    Very concise introduction of what topology is. Thank you very much!

  • @ashutosh_yadav
    @ashutosh_yadav 3 роки тому +11

    Well I was looking for this topic for my optimization course. And this video is equally informative and soothing 😌💙💙

  • @learnenglishwithjojo
    @learnenglishwithjojo 3 роки тому +10

    This is awesome! We need other topology videos! :)

  • @HierophanticRose
    @HierophanticRose 3 роки тому

    Topology can also be utilized to create evocative imagery and art. As, study of form and associated function can be used to create imagery, film, or architecture which utilizes the forms in different scales in shorthand to denote evocative function, scale, space, and art.

  • @geoffrygifari3377
    @geoffrygifari3377 3 роки тому +2

    Hmmm.
    Wonder what makes topological shapes different from each other. Is it just holes? Other ways to tell shapes apart even if they have the same holes?

  • @swagsallywally
    @swagsallywally 3 місяці тому +1

    my geometry took a topology class to fill space in his schedule when he was in college😭😭

  • @gebeklitepe1004
    @gebeklitepe1004 6 років тому +2

    что означает ваша картинка 2:46?я частично понимаю в топологии,но не пойму что означает человек,разделенный на двух шарах.)???

    • @JacobRy
      @JacobRy 3 роки тому +2

      сферическая геометрия

  • @هيلة-ع8م
    @هيلة-ع8م 3 роки тому +4

    I keep hearing about the “squishy/rubbery” thing on a lot of topology’s videos but i never understood where in the definition of topology does such intuition come?

    • @AlternatingSum
      @AlternatingSum  3 роки тому +4

      I meant to make a video explaining this eventually, and maybe I will one day, but in the meantime: The technical terms for the squishiness are “homotopy” and “homeomorphism”.
      When we say “You can squish one shape to turn it into another”, the technical way of saying that is either “those two shapes are homeomorphic” or “those two shapes are homotopy equivalent.” (The second statement allows for more intense squishing, where you can squish a ball into a single point, for example.)
      I don’t know what your background is or whether you’ve taken a topology class, and I’m afraid that may be an unhelpful answer if not, but those are the terms where that intuition connects to technical definitions. Thanks for your question, regardless.

    • @هيلة-ع8م
      @هيلة-ع8م 3 роки тому +3

      @@AlternatingSum holy shit I didn't think you'd reply lol.
      I am a math major and I've studied topology before (introductory) i do understand the homomorphism analogy. What I meant in my question is how does the definition of topology makes us see shapes from the perspective of "how many holes there are"

    • @AlternatingSum
      @AlternatingSum  3 роки тому +6

      @@هيلة-ع8م Ha sure, I wanted to reply because I initially thought to make a topology series to address exactly the disconnect you’re talking about, between very intuitive introductory videos and rigorous but arcane-seeming topology lectures. Since I only made one video I didn’t get very far towards that goal, alas.
      Re: number of holes - if two spaces are homeomorphic then they have the same number of holes, the same kinds of holes, and those holes interact with each other in the same way. Really what I mean is: They have the same fundamental group and the same homology groups. Introductory topology classes usually don’t get to homology, and often don’t get to the fundamental group either, which I think is a little unfortunate - they’re kind of laying the groundwork for concepts but never quite getting there. Algebraic topology classes are where you really get into that stuff.
      I do like actually like a lot of point-set-topology on its own, the weird pathological examples like the topologists’s sine curve are fun. It can be a nice exercise in stretching your intuition about how space can behave, but it’s not everyone’s cup of tea (or donut of tea, I suppose).

  • @NovaRuner
    @NovaRuner Рік тому +1

    There is a video called “outside in” where a lady narrator is explaining to a guy narrator how to turn a sphere inside out.
    Anyway…. Is that an example of Topology? Miss narrator explained that they were working with an abstract elastic material that can bend and stretch, and pass through itself, but can’t crease sharply. Is that the “squishy” stuff of topology shapes?
    here is a link to one example of the video: ua-cam.com/video/IbGNZQvobkc/v-deo.html

  • @Gitohandro
    @Gitohandro 7 років тому +23

    Why are holes so important in topology?

    • @pussinbootsisawesome
      @pussinbootsisawesome 7 років тому +13

      Gitonga Mwaniki in topology you cant make/mold together holes. in the 1 hole and 2 hole donut example, streching the donut and pulling the middle together to connect counts as making a hole. as such you can conclude that they are not topologically equal. if it was allowed everything would be the same and there would be no point in topology

    • @Nothing_serious
      @Nothing_serious 7 років тому +10

      ( ͡° ͜ʖ ͡°)

    • @benjaminhanson6137
      @benjaminhanson6137 7 років тому

      That's all true except that you can close holes with continuous transformations. You just can't "open" a hole through tearing because those points at the seam/cut will move a different distance than the neighboring points.

    • @benjaminhanson6137
      @benjaminhanson6137 7 років тому

      You're still right though, these would not be topologically equivalent because while you can close holes technically, the tearing is what eliminates the inverse. Without an inverse function, we can't preserve continuity.

    • @ianlucas6635
      @ianlucas6635 5 років тому

      @@benjaminhanson6137 actually I don't think you can close a hole because then you would be making the surface difference, if you just shrunk the hole until it "disappeared" then the hole might not look like it's there, but its inner lining would have to still be there unless I'm completely misunderstanding topology, because there would be no way to manipulate the shape to have the inner lining disappear.

  • @charumathib9662
    @charumathib9662 5 років тому +1

    this is the actual which I have been searching for long time 😊 thank u next part of this video pls

    • @zirconium2014
      @zirconium2014 5 років тому

      i dont think this channel is reviving back any time soon :cc

  • @greenpeppermint7518
    @greenpeppermint7518 4 роки тому +4

    I’m going to dig a hole in the Earth
    I am so evil I am topologically changing the earth

  • @Isa-tn7ex
    @Isa-tn7ex 8 місяців тому +1

    the only inaccurate part about this video is that it is a very funny joke

  • @TheHajinator
    @TheHajinator Рік тому

    So is it geometry at scale but shapes are only grouped together based on characteristics they may have in common rather than equivalency?

  • @nolifeonearth9046
    @nolifeonearth9046 8 років тому +102

    So the human body is equal to a donut :)

    • @AlternatingSum
      @AlternatingSum  8 років тому +45

      Yep! A donut with a few fluid-filled internal compartments, but still. :)

    • @radeklew1
      @radeklew1 7 років тому +14

      nolifeonearth a three-holed donut, I think, since the nasal sinus connects to the mouth.

    • @malcomthonger
      @malcomthonger 7 років тому +17

      no there is more than one hole

    • @خالدم-ظ5ع
      @خالدم-ظ5ع 6 років тому +1

      nolifeonearth فوزي موزي

    • @sonmai3526
      @sonmai3526 6 років тому +6

      @@malcomthonger more than one hole? that's the ULTRA DELICIOUS donut!

  • @AhmadBlackDevil1993
    @AhmadBlackDevil1993 Рік тому

    Great intro ❤

  • @MrWithinsGift
    @MrWithinsGift 4 роки тому +1

    You're Awesome.

  • @TheRealNickG
    @TheRealNickG 2 роки тому

    There not being a difference and not being currently interested in the difference are very different things. But yeah you are basically right.....The triangle variations and circle variations are not topologically similar (ie homeomorphic). And some of those things are "allowed", they just can't be done without qualification. Cartography is probably the best example of a loose application of topology. You are describing the same shape of the planet, but having different ways of expressing it depending on the context.

    • @AlternatingSum
      @AlternatingSum  2 роки тому +2

      Oh, when I say “triangle” I mean the boundary of a 2-simplex, and those are homeomorphic to circles.
      It’s true that my some of my language here was hand-wavy - this is an introductory video, and when I made it I was laying the groundwork for motivating the rigorous definition of homeomorphisms in a later video. I never got to it, but maybe one day.

  • @ryangunnison38
    @ryangunnison38 7 років тому +3

    I've been trying to figure out, what would you consider the opposite of topology? Like the study of making holes and changing data in space.

    • @darwinvironomy3538
      @darwinvironomy3538 2 роки тому

      hmm

    • @ryangunnison38
      @ryangunnison38 2 роки тому +1

      @@darwinvironomy3538 Poke-ology, Advanced Concepts in Void

    • @darwinvironomy3538
      @darwinvironomy3538 2 роки тому

      @@ryangunnison38 you made it up or that's real?

    • @darwinvironomy3538
      @darwinvironomy3538 2 роки тому

      @@ryangunnison38 it's a cool subject but i don't get the application and if you define something consistent

    • @ryangunnison38
      @ryangunnison38 2 роки тому +1

      @@darwinvironomy3538 I was thinking about it for a scifi concept but I dont think there are real world applications, and the names are just me having fun

  • @geluklu
    @geluklu Рік тому

    basicly topologicy is math of holes?

  • @borntouke12345
    @borntouke12345 3 роки тому

    Thank you for making this video. It was very helpful.

  • @unnikrishnanmuriyanal1216
    @unnikrishnanmuriyanal1216 4 роки тому +1

    What are application of topology in moder era

    • @88michaelandersen
      @88michaelandersen 3 роки тому +3

      Topological data analysis is a hot topic in modern science. Basically, one imagines that all of the data points had to come off of some topological shape (called a manifold) and then there is some math to try to figure out what type of manifold the data points came from.
      One of my coworkers did a few years at Sandia Labs and found out that topological data processing methods were much better at figuring out where to put the drill to get oil and natural gas than previous partial differential equations methods were. One reason why this is the case is that the PDE method had to try to figure out the approximate shape of the caves that the oil was in, but the topological method only cared about the topological types of caves that the oil was in.

  • @IanMott
    @IanMott 3 роки тому

    Well done! Good Job!

  • @wahabfiles6260
    @wahabfiles6260 4 роки тому

    I am wondering when will the new video on Topology be released?

  • @dhruvsharma5852
    @dhruvsharma5852 3 роки тому

    Next lectures in this series?

  • @normanofthetempest7347
    @normanofthetempest7347 8 місяців тому

    This was good!

  • @muhammadnourhereh4581
    @muhammadnourhereh4581 3 роки тому +1

    Who invented topology has a strange fetches about holes.

  • @naikgauravi32
    @naikgauravi32 4 роки тому

    Thank you. Where can i find the next part?

  • @ditang1162
    @ditang1162 5 місяців тому

    The super donut we call it a pretzel😊

  • @MetaITurtle
    @MetaITurtle Рік тому

    Is a blackwhole a whole?

    • @eggheadusa
      @eggheadusa Рік тому

      Hole*
      There’s definite answer yet, mostly the scientific consensus is it’s just a really dense ‘object’ not is wormhole

  • @malcomthonger
    @malcomthonger 7 років тому +1

    the three holed donut looks sad

  • @Sarahrak06
    @Sarahrak06 9 місяців тому

    Ok these r rlly interesting concepts but also what’s the point of studying this? Like how can this be applied to real life? (Would u need to know this for engineering or physics or smth?) Or is it just studied for fun?

    • @shivankpal3678
      @shivankpal3678 8 місяців тому

      Various concepts have several different applications. Here is the one application of topology. So in topology you have topological spaces, some topological spaces are very useful and they're known as manifolds(basically surfaces in higher dimensions). In general theory of relativity, spacetime is a 4 dimensional manifold that allows one to understand gravity and how a lot of things in the universe work. This is just one application. It even has application in quantum computing.

  • @KosherLifeMir
    @KosherLifeMir 3 роки тому +1

    Who’s here after seeing that ad on Instagram? My mind was blown I had to do more research on topology 😂😂😂🤔🤔🤔🤯

  • @filipnagy3535
    @filipnagy3535 6 місяців тому

    this is more algebraic topology than basic point set topology

    • @ClumpypooCP
      @ClumpypooCP 25 днів тому

      Well yeah but algebraic topology is what topology is actually “used” for, “in the wild” so to speak

  • @jackwo95
    @jackwo95 3 роки тому

    Thank you very much, it was very useful!

  • @Weezyme007
    @Weezyme007 5 років тому +2

    So basically topology is the study of holes?

  • @danchatka8613
    @danchatka8613 3 роки тому +2

    wow. you're a good explainer. thanks for a great intro.

  • @tantarudragos
    @tantarudragos Рік тому

    And then when you have some topology classes in college it's all closed\open sets and other set-teoretic stuff with little to no visualizations of the objects 😅.
    I'm probably biased because I've only ever had topology courses in the context of other classes.

    • @ClumpypooCP
      @ClumpypooCP 25 днів тому

      If you take an algebraic topology class you start seeing the shapes

  • @zoranhacker
    @zoranhacker 8 років тому +3

    next part?

    • @AlternatingSum
      @AlternatingSum  8 років тому

      Eventually! I decided to make the "Distance, Dimension, and Space" playlist first, since that material is a prerequisite for the next topology video. I'll release a video on 4-dimensional space soonish, then one on distances in high dimensional spaces. Then I'll be ready to resume the topology series. :)

    • @zoranhacker
      @zoranhacker 8 років тому

      Great, thanks for replying, subbed!

  • @jacobthelord
    @jacobthelord 5 років тому +2

    when is this taught

    • @lordspongebobofhousesquare1616
      @lordspongebobofhousesquare1616 4 роки тому +3

      undergraduate math programs usually have topology as a 3rd or 4th year subject, mandatory or elective depending on the university

    • @jacobthelord
      @jacobthelord 4 роки тому +1

      @@lordspongebobofhousesquare1616 thank u spongebob

  • @nameless9204
    @nameless9204 8 років тому

    Very nice Video :D Thank you for this good explanation ^^

  • @pstuddy
    @pstuddy 8 років тому +4

    wait....this has nothing to do with 3d modeling right?

    • @calebsherman886
      @calebsherman886 7 років тому +1

      pstuddy Might have something to do with meshes.

    • @lisalegato0109
      @lisalegato0109 4 роки тому

      Topology is useful in animation

  • @hildeparlat9953
    @hildeparlat9953 4 роки тому

    Thanks for this!

  • @zerotoinfinity8734
    @zerotoinfinity8734 Рік тому

    Excellent

  • @muskduh
    @muskduh Рік тому

    thanks for the video

  • @brazilfootball
    @brazilfootball 4 роки тому

    I have more questions than answers now...

  • @hectooooor
    @hectooooor 5 років тому +1

    Damn i need a donut right now😂

  • @waynelast1685
    @waynelast1685 4 роки тому

    good overview

  • @DeeneeKingz
    @DeeneeKingz 4 місяці тому

    should i be learning this at 7th grade?

  • @chrisghoste880
    @chrisghoste880 2 роки тому

    So topology is the study of holes. No wonder the word itself is full of Os.

  • @shavanmerja2773
    @shavanmerja2773 8 років тому +1

    notable notes of topology.

  • @woosaaa3486
    @woosaaa3486 Рік тому +1

    Interdimentional geometry

  • @2superlinkbros
    @2superlinkbros Рік тому

    … and then there’s point set topology which is way more generalized and we stop caring about all the properties in a metric topology.

  • @dr.avalanche4994
    @dr.avalanche4994 3 роки тому +1

    Ayo why am I here rn

  • @nichopriyatham2754
    @nichopriyatham2754 8 років тому

    amazing !!!

  • @lifesimulator3964
    @lifesimulator3964 7 років тому +1

    HOLES!!!

  • @RetoskiCat
    @RetoskiCat 4 роки тому +1

    And i have to define dis

  • @smashthatthumbsup9707
    @smashthatthumbsup9707 2 місяці тому

    I'm still confused

  • @choonghuh
    @choonghuh 4 роки тому

    i dont get it...

  • @eclektric
    @eclektric Рік тому

    I be studying holes

  • @richardreinertson1335
    @richardreinertson1335 Рік тому

    You have convinced me that topology is a subject that I have zero interest in, so thank you. BTW I have a distant relative who was a fairly well-known topologist: Oswald Veblen. I never understood what interested him about this subject, and I still don't.

    • @ClumpypooCP
      @ClumpypooCP 25 днів тому

      The problem is there does not exist a way to truly convey the intrigue of pure math to laymen who have not learned any of it. You can try explaining it at a very basic level like this video does, but its missing so so much of the greater context and richness that makes the subject actually interesting to learn.

  • @jangofett681
    @jangofett681 4 роки тому

    This video would greatly benefit from a de-esser. Otherwise - informative and well made video.

  • @CCABPSacsach
    @CCABPSacsach 3 роки тому +3

    69 dislikes????

  • @GOODBOY-vt1cf
    @GOODBOY-vt1cf 4 роки тому +1

    thank you so much

  • @Syrian.Coffee
    @Syrian.Coffee Рік тому +6

    I’m tired of hearing this joke

  • @hfh22
    @hfh22 3 роки тому

    Nice

  • @ulyssesdecastro2261
    @ulyssesdecastro2261 7 років тому

    Voice beatifull!

  • @struck_by_magic
    @struck_by_magic 4 роки тому +1

    Im in year 8 and im tryna learn how to do this (;´༎ຶٹ༎ຶ`)

  • @SunDry_Marchy
    @SunDry_Marchy Рік тому

    Holes (:

  • @Chiavaccio
    @Chiavaccio Рік тому

    👏👏👍

  • @jonarbuckle1560
    @jonarbuckle1560 3 роки тому

    call it symbolic logic and be done

  • @noel2577
    @noel2577 6 років тому

    2:05 uhh...ok

  • @birupakshchoudhury7057
    @birupakshchoudhury7057 Рік тому

    Topology is the ultimate difference between men and women

  • @thehomemadedisease9485
    @thehomemadedisease9485 7 днів тому

    Is anyone more confused?

  • @mayalovestheLord
    @mayalovestheLord Рік тому

    God loves you ❤

  • @AdrielReaño
    @AdrielReaño 2 місяці тому

    Too immature for the holes examples

  • @paulestrada961
    @paulestrada961 2 роки тому

    This is a horrible and misleading intro to what topology is.

  • @oishirley
    @oishirley Рік тому

    Stop saying holes. 🤤

  • @panbefi7683
    @panbefi7683 Рік тому

    you describe it horribly

  • @usher-p
    @usher-p Рік тому

    not very funny? come on..

  • @aymanhazim836_2
    @aymanhazim836_2 4 роки тому +1

    so Topology is nonsense thanks