Binomial Theorem Proof by Induction

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 81

  • @Jerros_
    @Jerros_ Рік тому +9

    Finally, a proof that isn't just 2 lines of math and then jumps to a conclusion, condensing all assumptions and steps in one go. Very neat to see you go through each step diligently!

  • @quickyairsoft
    @quickyairsoft 8 років тому +65

    Thank you! The proof was well explained, however, if you had said "representeded" one more time I would have gone crazy haha.

  • @JRay2113
    @JRay2113 8 років тому +19

    You're awesome! I finally got it. No many instructors/authors are explicit about the requirement to distributing Σf into (x + y) at the inductive step.

  • @Raselix
    @Raselix 2 роки тому +2

    Was never taught Pascal's rule so I stumbled hard on that step when I was doing this problem on my own. Most explanations didn't point out that step and moved right along. Thank you so much for explaining every step in detail!

  • @a3masi
    @a3masi 9 років тому +6

    Best explanation on the web. Great work

  • @jaroddavid5933
    @jaroddavid5933 3 роки тому +2

    11:03 - Explanation of Factoring k = 0 and k = m + 1

  • @shadow-ht5gk
    @shadow-ht5gk 2 роки тому +2

    Very elegant proof, well done.

  • @VictorMunch
    @VictorMunch 10 місяців тому +2

    great explanation thanks a lot! One question: if we shift the summation index from k=0 to k=1 and m to m+1, wouldnt we also have to reduce the terms in the brackets to (m-1 *over* k-1)?

  • @RaeRae-dp3kz
    @RaeRae-dp3kz 8 років тому +7

    Why is the shifting of index still needed if the original index starts with 0? I'm sorry I don't understand that part very well.

  • @chaumlp
    @chaumlp 8 місяців тому

    6:58 Why is it k=1 and m+1? How to prove it is correct to transform from k=0 to k=1 and m to m+1? I still don't understand this.

  • @fatima.m3730
    @fatima.m3730 3 місяці тому

    First of all , you are AMAZING I’ve been looking for this proof for a really long time. second of all is it possible for you to make a video on the proof of the inclusion exclusion theorem using the sigma notations ? Thank you

  • @dennisthompson4725
    @dennisthompson4725 4 роки тому

    I'm not sure what justifies changing the index at 10:50. If I'm showing that LHS=RHS how can I just change what RHS is?

    • @alrafikri
      @alrafikri 3 роки тому

      he doesn't change RHS at all. He only middling with LHS I think.

    • @Illuminous_
      @Illuminous_ 2 місяці тому +1

      we didn't change RHS, we only manipulated LHS using three things.
      - Summation identities
      - Index shifting property
      - Pascal's rule

  • @lazaredurand6675
    @lazaredurand6675 2 місяці тому

    For the base case. Why don't you chose n=0 ?

  • @ericasantoyo4415
    @ericasantoyo4415 9 років тому +2

    Can you explain the rationale of how you added the x^(n+1) and y^(n+1) into the summation
    Like why can we add them into the summation
    Specifically why does k then begin at 0 and then n goes to n+1

    • @matthewwilson4358
      @matthewwilson4358 4 роки тому +3

      a summation is just a sum of numbers, the x^n+1 and y^n+1 are just the first and last terms in that summation, that's why he rewrote them to look like the summation. You can "throw" them in because they are just terms that meet the criteria of the summation. By adding the first and last terms, you add the case when k=0 and the case when k=n+1 into the summation, because again its just addition. That's why the indices increment.

  • @whatisnextthen9836
    @whatisnextthen9836 2 роки тому

    what is pascal theorem you used

  • @katiefunk6959
    @katiefunk6959 7 років тому +8

    Godsend wizard man! Thanks for the help on my modern alg and number theory hw that's due in the morning 😂

  • @christopheribarra1170
    @christopheribarra1170 6 років тому +1

    You just heave to expand a binomial to a power (x+b)^n as a Taylor expansion to get the binomial theorem.

  • @zombieguy759
    @zombieguy759 3 роки тому +1

    I really love your videos, and I needed a favor. I need you to prove a bunch of things for me. I need you to prove the commutative property of addition for all real numbers, the multiplication of fractions, the addition of fractions, the commutative property of multiplication for all real numbers, and the distributive property for all real numbers including irrational numbers please. What I love about math is that it is always consistent and that properties are not made from thin air, and if you prove all these properties for me I will feel much better about that fact.
    Please I have searched in so many places and never found a satisfying answer. Please out of the kindness of your heart answer my questions

  • @nikoka2980
    @nikoka2980 3 роки тому +1

    Thank you so much, i really needed the verbal explanation, textbooks just don't explain this problem well enough for me.

    • @hussainfawzer
      @hussainfawzer 2 роки тому

      What are the text books your referring to ?
      Names please

    • @nikoka2980
      @nikoka2980 2 роки тому

      @@hussainfawzer im referring to Czech textbooks, written by my professor - i dont think theyre translated into english

    • @hussainfawzer
      @hussainfawzer 2 роки тому

      @@nikoka2980
      Do you have suggestions for rigorous proof based math books on these topics…
      I’m mainly interested in topics such as
      Binomial theorem
      Series and sequences
      Polynomials and rational functions
      I want some suggestions to proof based books…

    • @nikoka2980
      @nikoka2980 2 роки тому

      @@hussainfawzer im sorry, none written in english come to mind - but i will let you know if i ever find any

    • @hussainfawzer
      @hussainfawzer 2 роки тому

      @@nikoka2980
      Okay

  • @matyaslebeda7251
    @matyaslebeda7251 2 роки тому +1

    insane, really well explained, thanks man

  • @sxz452
    @sxz452 3 роки тому

    Elegant proof. Thank you.

  • @theviklink2044
    @theviklink2044 4 роки тому

    When you say "factor out" k=0 and k=m+1, isn't it rather that you are subtracting these terms from the sum? Because you are left with four terms and no multiplication signs in the next step, thus no factors.

  • @Anthony-db7ou
    @Anthony-db7ou 6 років тому

    Can someone explain the place thing around 12:30?

    • @julienwitty6473
      @julienwitty6473 5 років тому +1

      He use Pascal rule which state that C(n,k)+C(n,k-1)=C(n+1,k). The goal of this is to combine the 2 summations together so we can go further in the proof. Notice that the summation have the same expression inside so now they are comparable.

  • @chidionoh
    @chidionoh 3 роки тому +2

    you lost me at 7:45 :(

  • @Illuminous_
    @Illuminous_ 2 місяці тому

    Thank you, you Absolute KING !

  • @rickmonarch4552
    @rickmonarch4552 8 років тому +1

    why don't you upload these pics?

  • @thinkanddo2352
    @thinkanddo2352 6 років тому +3

    explained very well thank you.

  • @cameliad.b.4747
    @cameliad.b.4747 8 років тому +1

    Thanks!! The explanation is very clear. Awesome work!

  • @cfire011
    @cfire011 8 років тому +1

    Really helpful. Thanks for the awesome explanation!

  • @ashishkunyal2919
    @ashishkunyal2919 6 років тому

    Poor is very well explained and it is very help full for me

  • @whatisnextthen9836
    @whatisnextthen9836 2 роки тому +1

    thnx very helpful

  • @bradcrampton8920
    @bradcrampton8920 6 років тому +3

    very good. thanks. Now if I can do it without watching...

  • @sahilkhan_cs50
    @sahilkhan_cs50 6 років тому

    Fantastic thank u very much for the proof of binomial theorem.

  • @lelosaiyan2550
    @lelosaiyan2550 7 років тому

    Thank you! That was a very clear tutorial.

  • @Hi-FiKR16
    @Hi-FiKR16 Рік тому

    normally it is n=k and n=0 and then you subsitute k+1

  • @davidone8418
    @davidone8418 3 роки тому

    you're incredible thanks

  • @lukschs1
    @lukschs1 2 роки тому

    Al fin entiendo la prueba. Gracias

  • @nohaatef7100
    @nohaatef7100 3 роки тому

    Very useful . Thank you .

  • @JohnnyWorld
    @JohnnyWorld 2 роки тому

    Come back to Red Alert 2. You are missed.

  • @mukongshu
    @mukongshu 9 років тому +2

    why don't you start from 0 at basic step? coz your k starts at 0

    • @mukongshu
      @mukongshu 9 років тому +2

      +mukongshu because n is from 1, 1,2,3,4...

  • @jeanmahe8657
    @jeanmahe8657 5 років тому

    good explanation congrats

  • @shurkou
    @shurkou 8 років тому

    nice video brah ty

  • @merlinthegreat100
    @merlinthegreat100 9 років тому

    Pretty good proof.

  • @rezaghasemzadeh9440
    @rezaghasemzadeh9440 9 місяців тому

    very good

  • @Aleksandr-The-Bright-Guy
    @Aleksandr-The-Bright-Guy 2 роки тому

    brilliant

  • @sharpnova2
    @sharpnova2 2 роки тому

    nice proof. no serious mistakes worth mentioning. handwriting a bit messy though. do you have a drawing tablet or are you using a mouse?
    if it's a mouse, then props to you because it's better than my mouse-writing. but a drawing tablet might be awesome for you. i love mine. it's changed the way i teach.

  • @sarthakhajirnis1908
    @sarthakhajirnis1908 9 років тому +3

    Awesome... but in the end it should be = RHS

    • @RonJoniak
      @RonJoniak  9 років тому +1

      Sarthak Hajirnis Ah, you are correct. Good catch.

    • @evanurena8868
      @evanurena8868 9 років тому

      Ron Joniak How did you obtain the summand inside the summation for the LHS to look different from the RHS.

    • @RonJoniak
      @RonJoniak  9 років тому

      Evan Urena Is there a time you are referring to?
      -Ron

    • @evanurena8868
      @evanurena8868 9 років тому

      Ron Joniak Oh, never mind. You just muliplied both sides by (x+y) then simplified, am i correct?

    • @Vibranium375
      @Vibranium375 3 роки тому

      @@evanurena8868 No he just broke down the exponents

  • @orlandomoreno6168
    @orlandomoreno6168 6 років тому

    You call summands factors...

  • @MissAnaRichi
    @MissAnaRichi 5 років тому +1

    It is "represented")))))

  • @Axisoft
    @Axisoft 4 роки тому

    Ross Geller does math

  • @SantiagoGonzalez-wy4vx
    @SantiagoGonzalez-wy4vx 7 років тому

    I love this!!!

  • @mangoatree
    @mangoatree 6 років тому

    Good job, thanks! :)

  • @lavenderjiang2002
    @lavenderjiang2002 9 років тому +1

    Thanks Ron it helps :)

  • @mathsworld1619
    @mathsworld1619 4 роки тому

    good & thank you

  • @12345papad
    @12345papad 9 років тому +1

    Nice AMV

  • @ShaolinMonkster
    @ShaolinMonkster 4 роки тому

    Nice thank you

  • @raymondchen7716
    @raymondchen7716 8 років тому

    well done

  • @AnjaliSharma06
    @AnjaliSharma06 4 роки тому

    Thanks !

  • @marcodonlic530
    @marcodonlic530 8 років тому

    thank you so much

  • @vpambs1pt
    @vpambs1pt 6 років тому

    wow

  • @daniloloma7367
    @daniloloma7367 7 років тому

    Im tired to this .....

  • @DdoubleB03
    @DdoubleB03 3 місяці тому

    Wtf how does anyone understand this?? So unfortunate just wasted 30 minutes trying to understand what's going on after 7 minutes into the video and no luck.

  • @VictorWLogan
    @VictorWLogan 4 роки тому +2

    Amazing how many positive comments this guy's got for this non-explanation!! Noticing how horrible of an explanation this is, I wanted to glance through the notes. Based on what I read, I am sure that none of those people who claimed to have understood the train of thought presented here have done nothing except to confuse themselves...

    • @Vibranium375
      @Vibranium375 3 роки тому +1

      Actually it is quite a good explanation. Even though I already knew the proof, this actually made it clearer to me.

  • @merveguz3l
    @merveguz3l 2 роки тому

    Thank you so much