Algebraic Olympiad Question. Try it!! Improve your Math

Поділитися
Вставка
  • Опубліковано 10 гру 2024

КОМЕНТАРІ • 7

  • @barryzeeberg3672
    @barryzeeberg3672 День тому

    Assuming that 'a' is real, a^5 = 1 implies that a = 1. but it had been shown that 'a' not equal 1. by inspection, the solution for real 'a' is approximately slightly less than -1 (somewhere between -2 and -1).

  • @oida10000
    @oida10000 16 днів тому

    1+a+a^2+a^3+a^4=0 | recognize the general form (geometric series): sum_(k=0)^(n) a^k=1+a+a^2+...+a^n=(a^(n+1)-1)/(a-1) so multiply both sides:
    (a-1)(1+a+a^2+a^3+a^4)=0
    thus:
    a^5-1=0
    So a^5=1
    Thus a^2020+a^2010+1=
    (a^5)^(404)+(a^5)^(402)+1=
    1^404+1^402+1=
    1+1+1=
    3

  • @highlordin_visible978
    @highlordin_visible978 16 днів тому

    I have another solution
    Action 1:
    a^4 + a^3 + a^2 + a + 1 = 0
    a^2 * (a+1) + a + 1 = -(a^4)
    (a^2 + 1) * (a+1) = -(a^4).
    Action 2:
    a^4 + a^3 + a^2 + a + 1 = 0
    a^2 * (a^2 + 1) + a * (a^2 + 1) = -1
    a * (a+1) * (a^2 + 1) = -1
    (a+1) * (a^2 + 1) = -(1/a).
    And clearly 'a' can't equal zero. So we put Action 1 and Action 2 together...
    Action 3:
    a^4 = 1/a
    a^5 = 1.
    and so on, then it's the same way you did.
    (a^5)^402 + (a^5)^404 + 1 = 3.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 15 днів тому

    2a^20 1a^10 a^5^5a^2^3^2^3 a^2^1^1^3 a^2^3 (a ➖ 3a+2). 2a^8060 2a^8^6 2a^2^3^2^3 1a^1^1^1^2^3a^2^3(a ➖ 3a+2).

  • @champx5
    @champx5 17 днів тому

    is it 3?