Algebraic Olympiad Question. Try it!! Improve your Math

Поділитися
Вставка
  • Опубліковано 26 січ 2025

КОМЕНТАРІ • 10

  • @my.math.teacher
    @my.math.teacher  3 дні тому

    "Hey Math friends! If you’re enjoying this video, please support the channel by liking and subscribing. It helps me keep creating more content for you. Thanks for your support!"

  • @barryzeeberg3672
    @barryzeeberg3672 Місяць тому +1

    Assuming that 'a' is real, a^5 = 1 implies that a = 1. but it had been shown that 'a' not equal 1. by inspection, the solution for real 'a' is approximately slightly less than -1 (somewhere between -2 and -1).

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 Місяць тому +1

    Consider a geometic series with 1st element 1 and ratio a. The nth element 0:06 is a^(n-1).
    Given a⁴+a³+a²+a+1=0
    Multiply by a: a+a²+a³+a⁴+a⁵=0.
    It is clear sum of any 5 consecutive element is 0.
    a⁵[1+(1/a)+(1/a²)+(1/a³)+(1/a⁴)=0
    Consider
    k=a²⁰¹⁰+a²⁰⁰⁹+...+a⁵+a⁴+a³+a²+a+1
    There are 2011 elements. Counting from left 5 elements each time, k=1. But counting each time 5 elements from right, k=a²⁰¹⁰
    Thus a²⁰¹⁰=1
    In the same way, a²⁰²⁰=1.
    Therefore a²⁰²⁰+a²⁰¹⁰+1=3

  • @raghvendrasingh1289
    @raghvendrasingh1289 29 днів тому

    a = 1 doesn't satisfy the equation hence (a -1) is not equal to zero and we can multiply both sides by (a-1)
    Multiplying both sides by (a -1) we get a^5 = 1
    putting in expression
    Result = 1+1+1 = 3

  • @highlordin_visible978
    @highlordin_visible978 2 місяці тому +1

    I have another solution
    Action 1:
    a^4 + a^3 + a^2 + a + 1 = 0
    a^2 * (a+1) + a + 1 = -(a^4)
    (a^2 + 1) * (a+1) = -(a^4).
    Action 2:
    a^4 + a^3 + a^2 + a + 1 = 0
    a^2 * (a^2 + 1) + a * (a^2 + 1) = -1
    a * (a+1) * (a^2 + 1) = -1
    (a+1) * (a^2 + 1) = -(1/a).
    And clearly 'a' can't equal zero. So we put Action 1 and Action 2 together...
    Action 3:
    a^4 = 1/a
    a^5 = 1.
    and so on, then it's the same way you did.
    (a^5)^402 + (a^5)^404 + 1 = 3.

  • @oida10000
    @oida10000 2 місяці тому

    1+a+a^2+a^3+a^4=0 | recognize the general form (geometric series): sum_(k=0)^(n) a^k=1+a+a^2+...+a^n=(a^(n+1)-1)/(a-1) so multiply both sides:
    (a-1)(1+a+a^2+a^3+a^4)=0
    thus:
    a^5-1=0
    So a^5=1
    Thus a^2020+a^2010+1=
    (a^5)^(404)+(a^5)^(402)+1=
    1^404+1^402+1=
    1+1+1=
    3

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 місяці тому

    2a^20 1a^10 a^5^5a^2^3^2^3 a^2^1^1^3 a^2^3 (a ➖ 3a+2). 2a^8060 2a^8^6 2a^2^3^2^3 1a^1^1^1^2^3a^2^3(a ➖ 3a+2).

  • @champx5
    @champx5 2 місяці тому

    is it 3?