WOW! The Most AMAZING Way of Solving an Integral Ever! Deriving Raabe's Integral Formula!

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 101

  • @ruinenlust_
    @ruinenlust_ 5 років тому +114

    I watched all 20 minutes and I couldn't stop smiling at your excitement

  • @m_obispo
    @m_obispo 5 років тому +74

    So... any chance of an Integral tier List video?

  • @Rundas69420
    @Rundas69420 5 років тому +71

    We use the Gamma Function, the Leibnitz Rule and Euler's reflection formula like they're the easiest things on earth and still need to debate whether Pi is now equal to 0 or not.
    Also at 18:03 the german boi came through once more: What is a "diskriptschen"? :D

  • @joso5681
    @joso5681 5 років тому +91

    Last time I was so early, calculus did not even exist

    • @remlatzargonix1329
      @remlatzargonix1329 5 років тому +3

      Joaquin Sotomayor Escudero ....was it before time existed?

    • @pauljackson3491
      @pauljackson3491 5 років тому +4

      Last time I was this early, Newton and Leibniz still liked each other.

  • @tszhanglau5747
    @tszhanglau5747 5 років тому +13

    Beautiful indeed. Papa Raabe would be proud.

  • @adithyar4282
    @adithyar4282 5 років тому +15

    Your way of explanation of complex mathematics is pretty awesome hats off

  • @Ħasan
    @Ħasan 5 років тому +48

    Integrate arctan(x!)

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +11

      *insert the excuse me wtf meme*

    • @anegativecoconut4940
      @anegativecoconut4940 5 років тому +3

      Not elementary.

    • @michaelempeigne3519
      @michaelempeigne3519 5 років тому +1

      integrating arctan x is easy.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +15

      Michael Empeigne This is not arctan(x), this is arctan(x!). This is definitely not elementary. To integrate this, one would need to integrate by parts. For example, if the bounds of integration are x = 0 and x = t, then one could antidifferentiate 1 to x and differentiate arctan(x!) to x!ψ*(x)/[1 + (x!)^2]. From this, one can conclude the integral of arctan(x!) from x = 0 to x = t is equal to the difference of x!·ψ*(x)/[1 + (x!)^2] evaluated at the points x = 0 and x = t, all minus the integral of x·x!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t. The difference of x!·ψ*(x)/[1 + (x!)^2] evaluated at the points x = 0 and x = t is equal to t!·ψ*(t)/[1 + (t!)^2] + γ/2, and the integral of x·x!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t is equal to the integral of (x + 1)·x!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t minus the integral of x!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t. The latter can be evaluated with a simple substitution. Let y = x!, so dy = x!·ψ*(x)·dx. This leaves the integrand 1/(1 + y^2), with bounds of integration y = 1 and y = t!. This integral is equal to arctan(t!) - π/4 by the fundamental theorem of calculus. The former is equal to the integral of (x + 1)!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t. Therefore, the integral of arctan(x!) from x = 0 to x = t is equal to t!·ψ*(t)/[1 + (t!)^2] + arctan(t!) + γ/2 - π/2 minus the integral of (x + 1)!·ψ*(x)/[1 + (x!)^2] from x = 0 to x = t. This is the furthest one can go in evaluating this integral. The latter involves the shifted factorial, which implies that one could write a linear recurrence relation to encode the value of the integral, but it is trivial to note that such recurrence relation has non-elementary solutions.

  • @kwirny
    @kwirny 5 років тому +16

    14:34 When the effects of math kick in

  • @billdrish8818
    @billdrish8818 5 років тому +1

    Like your enthusiasm. I also loved neat (algebraic) methods of solving integrals when I was an undergrad.

  • @alekk_
    @alekk_ 5 років тому +17

    Damn I just derived this yesterday and thought it was the coolest thing ever. Are you also going to use this to get the generalization for hyperfcatorials?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Flammable Maths damn

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Alekk Getting the generalization is rather trivial from this, though. For example, if you sum the equation with t running from 0 to s - 1, you get that the integral of ln[Γ(x)] from x = 0 to x = s is ln[sqrt(2π)]·s - s(s - 1)/2 plus the sum of t·ln(t) from 0 to s - 1. t·ln(t) = ln(t^t), and the sum of natural logarithms is the natural logarithm of the product. Therefore, the sum of ln(t^t) from 0 to s - 1 is equal to the natural logarithm of the product of t^t from 0 to s - 1. Given the convention 0^0 = 1, this product is simply equal to the hyperfactorial of s - 1 for integer s. Hence, this gives us an immediate generalization defined from the Gamma function. Call this product K(s), and let K(s) be the analytic continuation of the shifted hyperfactorial. Then the hyperfactorial is equal to sqrt(2π)^s·e^[s(s - 1)/2]e^I, where I is the integral of ln[Γ(t)] from 0 to s. Alternatively, e^I is equal to the standard geometric (product) integral of 0 to s of Γ(s). This geometric integral is also equal to the continuous analogue of the product of factorials, which is equal to the superfactorial. Thus, this equation relates the generalizations of the factorial, superfactorial, and hyperfactorial.

  • @aleskrcek8957
    @aleskrcek8957 5 років тому +2

    That's reason, why Math is queen of science!!! Beautiful INTEGARAL 😍

  • @juandiegoparales9379
    @juandiegoparales9379 4 роки тому +1

    Flammable mathematic's mindblowers

  • @sergioh5515
    @sergioh5515 5 років тому +1

    A very spicy integral papa...I absolutely love your work. Thank you for all you do. Seriously.

  • @kaz_breaker
    @kaz_breaker 5 років тому +2

    Really epic integral!

  • @RealLifeKyurem
    @RealLifeKyurem 5 років тому +6

    So in other words, the integral of ln(Γ(x)) and of ln(x) are off by a constant, ln(2π)/2

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +4

      Aphrontic Alchemist No, not at all. The integral that he derived in the video has x running from t + 1 to t, not from 0 to t, so this is not *the* integral of ln(Γ(x)). However, it is correct that forward difference of the antiderivative of ln(Γ(x)) is just the antiderivative of ln(x) plus a constant.

  • @neilgerace355
    @neilgerace355 5 років тому +5

    19:43 Dressed by Hugo Boss

  • @eliyasne9695
    @eliyasne9695 5 років тому +1

    Amazing, so beautiful!

  • @deveshsharma8118
    @deveshsharma8118 4 роки тому +1

    That is the most beautiful integral☝️☝️☝️🙌

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +1

    Wow .... It was great. I just enjoyed.
    Thank you so much *🔥Flammable Maths🔥* .

  • @angelmendez-rivera351
    @angelmendez-rivera351 5 років тому +1

    I think this formula is super interesting, because if you sum both parts of the formula, with t running from 0 to s - 1, for example, you get the integral of ln(Γ(x)) from 0 to s, which is the antiderivative of ln(Γ(x)), being equal to ln(sqrt(2π))s - s(s - 1)/2 plus the summaton of t·ln(t) with t running from 0 to s - 1. This last summation is simply equal to ln(K(s)), where K(s) is the K-function, the analytic continuation of the hyperfactorial. This is simple to derive, since t·ln(t) = ln(t^t), and the sum of logarithms is the logarithm of a product, and the product of consecutive t^t's is the K-function. Therefore, what Raabe's formula implies is that the antiderivative of ln(Γ(x)) is C + ln(sqrt(2πe))·x - x^2/2 + ln(K(x)). This is crazy cool! It is a very unorthodox method for finding an antiderivative, and nonetheless to do it for a function that one would think you could not express its antiderivative in terms of other "elementary" functions. It is also cool because it indirectly relates factorials to hyperfactorials. To create a direct relationship between the factorials and hyperfactorials, simply exponentiate this equation. By doing so, you change the logarithmic integral into a product integral. The product integral from 0 to t of Γ(x) is equal to K(x)·e^(-[x^2 - ln(2πe)·x]/2) = K(x)·e^[-x(x - 1)/2]·sqrt(2π)^x, meaning that the product integral of factorials is the hyperfactorial times some exponential function. And the most beautiful part about this is that this is totally consistent with Stirling's approximation. In fact, if you take the product on both sides of Stirling's approximation, you get an expression that gives the asymptotic approximation to this exact equation, which is probably since products asymptotically approximate product integrals. I think this truly is S-tier.

  • @osboom346
    @osboom346 5 років тому

    Damn! Mate that is an absolute beaty. I'm so happy to watch this. Tank you

  • @janda1258
    @janda1258 2 роки тому

    4:27 couldn’t one just use substitution to solve that integral since the integrand is on the form f’(x)/f(x) which would yield ln[ f(x) ]

  • @dgrandlapinblanc
    @dgrandlapinblanc 5 років тому

    What a mad boy ! Thank you very much.

  • @juegosdepalabrasderonYValorant
    @juegosdepalabrasderonYValorant 5 років тому +1

    Lovely person, please make some videos using The epsilon delta for limits (including the derivative), more series and integrals.

  • @biswadeepchatterjee6074
    @biswadeepchatterjee6074 5 років тому

    One of ur best video papa.....;) loved it

  • @redhotminipepper1
    @redhotminipepper1 5 років тому +1

    Papa Flammy, great vid as usual.. I'd like to see where these integrals occur in science/physics, gives a little more context about why they needed solving :)

  • @lordodracir2371
    @lordodracir2371 5 років тому +1

    in 7:30 you indicate that the in the numerator Gamma(t+1) = t.Gamma(t), but Gamma(t+1) = (t+1).Gamma(t).

    • @neilgerace355
      @neilgerace355 5 років тому +1

      @Hamish Blair yes
      Γ(t+1) = t! = t . (t-1)! = t . Γ(t)

  • @Gustavo_0107
    @Gustavo_0107 5 років тому +3

    when your natural logs looks like a limit

  • @ishaanshrivastava8671
    @ishaanshrivastava8671 5 років тому

    Papa flammy what is the intro song at 0:22?

  • @Downloader77
    @Downloader77 5 років тому

    He uses a blackboard and chalk, from there onwards I know the guy has class, respectable and very clever work!

  • @MuhammadInaamSufi
    @MuhammadInaamSufi 4 роки тому +1

    I love your writing board so can you tells details about your board.

  • @Celastrous
    @Celastrous 5 років тому +1

    What intro song does flammy use?

  • @trololollolololololl
    @trololollolololololl 5 років тому +4

    B O I 👏

  • @treyforest2466
    @treyforest2466 5 років тому +2

    This looks a lot like Stirling’s approximation. Is that derived from this?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Trey Forest You can derive the Stirling's approximation from this, but it is not how it was originally derived when first discovered.

  • @aljoker3053
    @aljoker3053 3 роки тому

    A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t

  • @luisdaniel9542
    @luisdaniel9542 5 років тому +3

    Can someone explain the meme at the start? that one sure went over my head

  • @mathematicadeestremo6396
    @mathematicadeestremo6396 5 років тому +1

    where is papa?? behind ∫ln(Γ(x)dx ?

  • @michelkhoury1470
    @michelkhoury1470 5 років тому

    Hey boy nice solution I solved this beautiful by using the Legendre formula 😎

  • @wansichen3743
    @wansichen3743 5 років тому

    meanwhile i just see that as \int (x ln x-x) dx, if i feel i got the time i will add to it +1/2ln (2\pi x) but usually that's just too insignificant anyway

  • @alessandrocaia1270
    @alessandrocaia1270 2 роки тому

    the integral of ln(t!) from x-1 to x asymptotilally equal to ln(x)! itself

  • @michaelempeigne3519
    @michaelempeigne3519 5 років тому

    Can you prove apollonius' Theorem?

  • @johnsalkeld1088
    @johnsalkeld1088 Рік тому

    Have you looked at how similar this result is to the Stirling’s approximation? Put everything under the log and have a look

  • @IshaaqNewton
    @IshaaqNewton 5 років тому +2

    Can you talk about the Finite value of power tower of i (imaginary),
    i^i^i^i^i^i........ =?
    And,
    Integral of
    F(x)=x^x^x^x^x^x^x^.........
    Please...

    • @tipeg8841
      @tipeg8841 5 років тому

      An Unknown does the first tower even converge? I doubt it does tbh, looks more like a 4 cycle on repeat. And the second one is a really weird function like below or at 0 its not defined, then it’s 1 up until 1 and after that it’s plus infinity. Reminds of a bit of the limit of n to infinity of x^n except that that one is defined at 0, but oh well. (I assumed you were talking about the infinite power tower, if not then sorry for this comment)

    • @IshaaqNewton
      @IshaaqNewton 5 років тому

      @@tipeg8841 Hey bro,
      Both of them are with infinite power. I desired to have a Finite value of it.

    • @tipeg8841
      @tipeg8841 5 років тому

      An Unknown I am really confident the first doesnt have a single finite value, and how would you integrate an infinite function like that? Like for every finite tower it’s doable and I’m sure it has a pattern but you probably can’t do that for infinitely many Xs

    • @IshaaqNewton
      @IshaaqNewton 5 років тому

      @@tipeg8841 y=x^x^x^.......
      Actually means y=x^y, 😃
      i^i^i^i^..... is must having a finite value though I don't know the answer.
      If it is equal to y,
      Then y= i^y

    • @tipeg8841
      @tipeg8841 5 років тому

      An Unknown I already know that but plug in any number and see it doesn’t work if it’s not inside the radius of convergence of the series. Just being able to say x = y^(1/y) doesn’t mean it actually IS that value, take x=10 and it’s obvious it that doesn’t converge. So you first need to find it’s radius of convergence before getting your hopes up. I’m not an expert on the answer but you can google it too if you’re really curious 🤔

  • @lordlix6483
    @lordlix6483 5 років тому

    Beautiful😄

  • @mathematicadeestremo6396
    @mathematicadeestremo6396 5 років тому

    papa gone mad at 6:14 and became δδ

  • @TmyLV
    @TmyLV 4 роки тому

    PAPA FLAMMY : you remind me about me when I was your age. I
    Like you a lot!

  • @xiaokangzhang3077
    @xiaokangzhang3077 4 роки тому

    > Stirling's Approximation yeet ~ Engineers

  • @coopa9822
    @coopa9822 5 років тому

    Haha "oh what the fuck that was not a nice gamma function"

  • @enx2083
    @enx2083 5 років тому +4

    Hah! Lucky refresh!

  • @nicholasthesilly
    @nicholasthesilly 5 років тому +2

    Delicious Broccoli Raabe.
    P.S. Someone explain the intro meme to me pls

  • @aidansgarlato9347
    @aidansgarlato9347 5 років тому +4

    I think theres a mistake when you say that (x+1)! = x!x it's equal to x!(x+1)

  • @henrybeenh7076
    @henrybeenh7076 5 років тому

    I'd love some pie

  • @cosimobaldi03
    @cosimobaldi03 5 років тому +2

    10:05 we're going to put it - down DOWN -
    cit.

  • @atomiccompiler9495
    @atomiccompiler9495 5 років тому +3

    This is nicer than 69.

  • @KillianDefaoite
    @KillianDefaoite 4 роки тому

    One could also view this as the double integral of the digamma :)

  • @alejandrojimenez108
    @alejandrojimenez108 5 років тому +1

    This was a bit too trivial. But thanks anyway, it was a fun solve.

  • @erikthered4091
    @erikthered4091 5 років тому

    Epic

  • @jp-ratsratsrats
    @jp-ratsratsrats 5 років тому

    nice

  • @josephmartos
    @josephmartos 4 роки тому

    You are so fucking funny xD xD

  • @joda7697
    @joda7697 3 роки тому

    I did this before watching, but i can't figure out how to get rid of the constant after integration.
    My result is I(t) = t * (ln(t) - 1) + c
    Does anyone have a particular pair of values (x,y) such that I(x)=y?
    That would be enough for me to get a full solution.
    Edit 1: Ok i now at least have I(0) = c, but still can't find the value for I at x=0
    Edit 2: Got it now, c=0
    Edit 3: Wait wtf? Why is my constant wrong? Oh maybe because the argument for setting c=0 used the assumption that the factorial is a continuous function, which on the interval [-1,1] it is absolutely not. Whoops!
    Edit 4: Wait but it does look continuous there. Can someone tell me what i did wrong?
    For context, my approach was to use the recursive definition of the factorial ( so x! = (x-1)! * x ),
    logarithm properties ( ln(a * b) = ln(a) + ln(b) ) as well as the linearity of integrals,
    which yielded I(t) - I(t-1) = Integral from t-1 to 1 of ln(x)dx
    I then used the fundamental theorem of calculus to tell me that ln(x) = d(I(x))/dx, did the improper integral and got I(t) = t * (ln(t) - 1) + c

  • @bludeat7398
    @bludeat7398 5 років тому

    Im fuckin mind blown...
    no srsly.... wtf

  • @edmund3504
    @edmund3504 5 років тому

    integaral

  • @diszno20
    @diszno20 5 років тому

    whats the meme all about? :O

  • @ezras7997
    @ezras7997 5 років тому

    Wowe!

  • @АндрейШерстобитов-в8д

    Номер 3869 из Демидовича, если что

  • @enzogiannotta
    @enzogiannotta 5 років тому +1

    I came

  • @spiritgoldmember7528
    @spiritgoldmember7528 5 років тому

    M’lady

  • @darkdevil905
    @darkdevil905 5 років тому +2

    My favourite SS boy

  • @mayankvats926
    @mayankvats926 5 років тому +1

    I am the 666th viewer

  • @zacharieetienne5784
    @zacharieetienne5784 5 років тому +1

    meh

  • @Antonio-mu3rx
    @Antonio-mu3rx 5 років тому +1

    I dont understand this shit

  • @АлексейАкимов-щ8т
    @АлексейАкимов-щ8т 3 роки тому

    Вообще мне не нравится ведущий и издёвки что он говорит и показывает. Я не в коем случае не хотел бы чтобы в жизни ко мне относились как-то так. Материал как по мне здесь бывает редкий и я в какой-то мере хочу его знать. Но это пожалуй единтсвинное за что можно любить данный канал.