Solving this awesome integral using one of the best substitutions you'll ever see!

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 33

  • @moeberry8226
    @moeberry8226 2 роки тому +7

    Great substitution I knew right away when putting a trig function inside a logarithmic function that this might turn into a phase shift integral.

    • @Chr15T
      @Chr15T 2 роки тому

      Please elaborate.

    • @moeberry8226
      @moeberry8226 2 роки тому

      @@Chr15T elaborate on what?

    • @Chr15T
      @Chr15T 2 роки тому

      @@moeberry8226 What is a phase shift integral and how did you know that right away?

    • @moeberry8226
      @moeberry8226 2 роки тому +2

      @@Chr15T a phase shift is when you use a substitution for a trig function pi/2-theta. This is done usually when a trig function is inside the natural logarithm. I knew it right away because the natural logarithm part has an initial substitution of 2^x-1= tan^2(u).

    • @holyshit922
      @holyshit922 2 роки тому

      We can calculate it without trigonometric functions but we need two substitutions
      First substitution t^2 = 2^x-1
      Second substitution u=1/t
      After first substitution we will get integral I_{1}
      After second substitution we will get integral I_{2}
      Now we can add them to get
      2I = I_{1}+I_{2}

  • @kobkik
    @kobkik 2 роки тому

    Absolutely amazing integral techniques i've ever seen, thank you so much.

  • @AshishYadav-zm7ky
    @AshishYadav-zm7ky 2 роки тому +1

    It's amazing to see such a great substitution, it require a lot much patience

  • @renesperb
    @renesperb 2 роки тому +5

    A very impresssive calculation ! The first substitution is far from being obvious. By the way : MATHEMATiCA ,which in general is very good for integrals , was not able to find the result.

  • @hydropage2855
    @hydropage2855 2 роки тому +3

    I actually thought of that substitution right away, but I probably wouldn’t have thought of the rest of the tricks down the line like the cofunction force or equivalent addition of the two integrals

  • @slavinojunepri7648
    @slavinojunepri7648 Рік тому

    How the heck did the author come up with this brilliant substitution? Practice definitely makes perfect.

  • @AdityaSarkar333
    @AdityaSarkar333 2 роки тому

    What a crazy integral , love it 😍
    I'll try this another way if i can

  • @bart2019
    @bart2019 Рік тому

    Mistake at 2:35: "tan x" should be "tan u"
    Corrected at 4:33

  • @kennethwilliams4169
    @kennethwilliams4169 2 роки тому +3

    You have to know these things 😊

  • @StingFPS
    @StingFPS 2 роки тому +1

    Impressive!!

  • @IsomerSoma
    @IsomerSoma 2 роки тому

    6:10 there's a minus missing before the integral after the Substitution.

    • @maths_505
      @maths_505  2 роки тому

      No it's not missing. If you switch up the order of limits of integration, it cancels out that negative sign

    • @IsomerSoma
      @IsomerSoma 2 роки тому

      @@maths_505 Yeah but you didnt switch the order of integration.

    • @maths_505
      @maths_505  2 роки тому

      Well it's all kinda implicit when you integrate using a phase shift. You see the integration is still being carried out from zero to pi/2. Try working through your substitution again.

    • @IsomerSoma
      @IsomerSoma 2 роки тому +1

      @@maths_505 oh okay i see. my bad.

  • @BS-bd4xo
    @BS-bd4xo Рік тому +1

    Bro how... how do you come up with these substitutions?! And who has the patience to think about one integral for that long?
    I would have tried u = √(2^x-1) or u = ln(2^x-1) or even u = ln(√(2^x-1)). But never freaking 2^x-1 = tan²(u) .....

    • @maths_505
      @maths_505  Рік тому

      There's never any harm in trying a substitution

  • @reesegyllenhammer9824
    @reesegyllenhammer9824 2 роки тому

    Great video! I wanted to see you re-substitute u for x, but still fantastic!!!!

  • @flewawayandaway4763
    @flewawayandaway4763 2 роки тому

    Are there other methods to solve this?

    • @maths_505
      @maths_505  2 роки тому

      Yes ofcourse but this one's just the most awesome

  • @holyshit922
    @holyshit922 Рік тому +2

    I used substitution
    2^x - 1 = u^2
    then i divided interval of integral into [0,1] and [1,infinity]
    Int integral [1,infinity] i substituted u=1/w
    and added both integrals

  • @oswaldovernet
    @oswaldovernet 2 роки тому

    Impressive

  • @jkid1134
    @jkid1134 2 роки тому +1

    Cool substitution. I'm not sure I could have come up with it. One note, your 'n's look way more like 'u's than anything else. Seeing tau and lu functions here 😂

  • @markadams2979
    @markadams2979 2 роки тому +1

    ASTOUNDING!

  • @nicogehren6566
    @nicogehren6566 2 роки тому

    nice trick

  • @carlosgiovanardi8197
    @carlosgiovanardi8197 Рік тому

    Very easy!
    In my country, we used to solve this kind of integrals while at kindergarten!!
    Just joking.
    Awesome!! Thanks for sharing.

  • @ІгорСапунов
    @ІгорСапунов Рік тому

    What about of convergence? You don`t proove that. Maybe, this integral does not converge, then we can`t substract and simplify