Stokes' theorem intuition | Multivariable Calculus | Khan Academy

Поділитися
Вставка
  • Опубліковано 22 лис 2024

КОМЕНТАРІ • 151

  • @Ali2475
    @Ali2475 12 років тому +91

    In class this made me experience something which I would define as "brain death."
    You're my resuscitation, Sal.

  • @devikabsree8087
    @devikabsree8087 6 років тому +86

    This is the most outstanding explanation of Stoke's theorem. So clearly explained. Thank you so much.

  • @sudarshanseshadri5504
    @sudarshanseshadri5504 3 роки тому +7

    Hours of reading the book and listening to prof lecture and this 10 mins was more effective than all that. And it’s not like Sal had the online video advantage - my prof also recorded and posted his lecture. Sal really has a gift.

  • @IamFilter94
    @IamFilter94 8 років тому +381

    I'm so Stoked my dudes

  • @panikostiritas5216
    @panikostiritas5216 5 років тому +191

    Crazy how 3 hours of lectures amounted to me retaining 0 knowledge. Then 10 minutes of this and I understand it like crazy

    • @Edgarisftw
      @Edgarisftw 4 роки тому +19

      Just goes to show there is a difference between teaching and teaching. Many students, myself included, learn much more from these kinds of videos with a good visual compared to a fast talking teacher stressfuly cluttering on the board.

    • @rowanyardley1781
      @rowanyardley1781 Рік тому +5

      @@Edgarisftw also probably help that people have had that previous amount of teaching. This 'learning' essentially amounts to consolidating some misconceptions to most people

  • @bawol-official
    @bawol-official 2 роки тому +4

    My final exam is in a week, I just got assigned homework for the sections on Vector Field, Green’s,Stokes, and Divergence theorem . Pray for me.

  • @kal5991
    @kal5991 12 років тому +13

    30% of my exam for university 2 weeks ago was on stokes and greens theorem. Thank you so much for these videos :)

  • @coco_jae
    @coco_jae 8 років тому +35

    wow... finally, i understand the stoke's theorem.

  • @EldonSchoop
    @EldonSchoop 12 років тому +7

    When I took multivariable calculus, I never got an intuitive understanding of Stokes' Theorem. Now I do. Thanks, Sal. :)

  • @sbullock2976
    @sbullock2976 8 років тому +18

    Wow. The simplicity of this explain blew my mind! Great video.

  • @amandaferguson6901
    @amandaferguson6901 2 роки тому +8

    Wow I came here for Stoke's Theorem and I get an actual explanation of curl also

  • @carmelpule8493
    @carmelpule8493 7 місяців тому

    I am now an old man and over 65 years ago I saw it all in this manner,
    The Curl is the amount of circulation behaviour around the smallest element dxdy. So if we total all the circulations on the elemental area, we find the circulation around the outer contour.
    This is no different from finding the total mass of a rod, If we know the mass per unit length then we integrate along the length to find the total mass.
    I believe that the following " activities have similar/related building blocks/ logic to produce the tacit differences. .
    1. Cauchy Riemann relations
    2. The Grad operator.
    3. The curl operator.
    4. the Divergence operator.
    5 . Green's Curl theorems of circulation
    6. Green's Divergent theorem of flux
    7. Stoke's Curl theorem involving circulation
    8. Divergence theorem involving divergences through volumes/surfaces,
    I always thought that students should see the close links there are in how these derivatives are combined to produce their " engineered" activity.
    dU/dx dU/dy dU/dz
    dV/dx dV/dy dV/dz
    dZ/dx dZ/dy dZ/dz and reduced to two dimensions
    dU/dx dU/dy
    dV/dx dV/dy
    .

  • @bijoythewimp2854
    @bijoythewimp2854 2 роки тому

    My college didn't reach here. I am way ahead. I lost my faith in teachers long time ago. Sal and other youtube teachers are my only hope and I am contended to have them as my virtual teachers.

  • @lordfieldsworth595
    @lordfieldsworth595 Місяць тому

    Never have I understood this so well. Khan Academy strikes again

  • @robertmatuschek913
    @robertmatuschek913 11 місяців тому

    reasoning for dotting with N. …We do this because curl is a vector whose direction is orthogonal to the Counter clockwise rotation and the dot product calculates the amount of curl in S

  • @MeshalWinehouse
    @MeshalWinehouse 4 місяці тому

    I’m on second year as a physicist 😮‍💨 can’t wait to graduate 😭😭 thanks for ur help.

  • @elizabetheckenrod2203
    @elizabetheckenrod2203 7 років тому +1

    And now I can pass my final... Bless you, Khan Academy!

  • @robromijnders
    @robromijnders 9 років тому +12

    Sal, you're a genius. Thank you!

  • @battleangelgally7548
    @battleangelgally7548 11 років тому +2

    Oh My Goodness! All those equations have suddenly started to make so much sense...
    Thanks a lot Sal!!!

  • @Virtualexist
    @Virtualexist 4 роки тому

    I get so happy with him when the vector fields and path are in the same direction !!!

  • @ParthPaTeL-wm3kt
    @ParthPaTeL-wm3kt 4 роки тому

    This is best video about stokes theorem in whole UA-cam, Great, thanks dude

  • @ananthakrishnank3208
    @ananthakrishnank3208 Рік тому

    This helps. For math and engineering education, visual intuition is minimal one should get.

  • @wagsman9999
    @wagsman9999 5 років тому +1

    Love the way Mr. Khan explains things.

  • @larrymendel1
    @larrymendel1 11 років тому +1

    the line integral of the vector field along C is the summation of all the curls on the surface

  • @mmzzcc2
    @mmzzcc2 12 років тому +1

    I wish I could have seen this video when I was at the university! Thanks Sal!

  • @sunset2.00
    @sunset2.00 5 місяців тому +1

    Sal's voice is reassuring.

  • @messedup9544
    @messedup9544 4 роки тому

    this really helps simplify the concept.THANK YOU

  • @cmprice11
    @cmprice11 6 років тому +1

    This video made it click. Thank you!

  • @adityaprasad465
    @adityaprasad465 5 років тому +1

    In the fifth example, if the direction had switched an odd number of times, the curl might still be zero, but we would have gotten a positive result for the line integral. So this perspective is neat but has serious pedagogical limitations.

  • @scp_at_iitb
    @scp_at_iitb 12 днів тому

    Love this explanation. Thanks

  • @KisekiTim
    @KisekiTim 11 років тому +1

    Great video. Very intuitive and easy to understand for people entering the field.

  • @epezzulli1163
    @epezzulli1163 11 років тому +5

    Absolutely Great explanation.

  • @DushyanthEdadasula
    @DushyanthEdadasula 7 років тому

    Khan, your way of teaching is awesome!!😍😍😍

  • @Citius1974
    @Citius1974 4 роки тому +2

    Wonderful! I've been fascinated by Stokes' Theorem since reading about it in Maxwell's Treatise on E&M (Vol 1 Article 24)...This video is an excellent intuitive explanation!!

  • @chinkostik124
    @chinkostik124 12 років тому +2

    Sal made me pretty stoked about Stokes' Theorem

  • @Prometeur
    @Prometeur 2 роки тому

    Incredible explanation, Sal is a hero

  • @rafainfernal
    @rafainfernal 6 років тому

    Best geometrical representation of this concept

  • @SourabhTiwari62
    @SourabhTiwari62 9 років тому +31

    Crystal clear..Thanks

    • @अण्वायुवरीवर्त
      @अण्वायुवरीवर्त 5 років тому

      Okay then tell me why would u take 0 when field is Orthogonal to our line integral???
      I may be late but it was crystal clear to u

    • @अण्वायुवरीवर्त
      @अण्वायुवरीवर्त 5 років тому

      @Devang Trivedi Ikr, I was trying to tell him that this wasn't a crystal clear explanation, it was vague. Even sal mentioned it

    • @shivamsharanlall672
      @shivamsharanlall672 5 років тому

      @@अण्वायुवरीवर्त but it is all clear. There is no vagueness....

    • @अण्वायुवरीवर्त
      @अण्वायुवरीवर्त 5 років тому

      @@shivamsharanlall672 he just gave an example n I bet one example isn't enough

    • @chemmaz
      @chemmaz 4 роки тому +2

      @@अण्वायुवरीवर्त you don't have to understand stokes' theorem to answer your question. simply knowing what the dot product mathematically implies is enough.

  • @PartVIII
    @PartVIII 12 років тому

    thank you so much Sal. im really enjoying these vector calculus videos

  • @shivamsharanlall672
    @shivamsharanlall672 5 років тому

    Now this is the physical explanation of a mathematical process.

  • @GOODBOY-vt1cf
    @GOODBOY-vt1cf 4 роки тому +1

    thank you so much

  • @laurabeltran3746
    @laurabeltran3746 Рік тому

    Thank you this was super clear!

  • @tuanthanhtruong4075
    @tuanthanhtruong4075 4 роки тому +1

    Wow This helped alot!!! Thanks!!!!

  • @sukursukur3617
    @sukursukur3617 3 роки тому

    Look through Aleph 0 explanation of this subject

  • @meme_engineering4521
    @meme_engineering4521 5 років тому

    You've got excellent knowledge and teaching skills👍👍👍

  • @astherphoenix9648
    @astherphoenix9648 6 років тому

    thanks, it's a good way to visualise

  • @craigcoates6247
    @craigcoates6247 6 років тому +1

    This man is a god

  • @gurpritsingh2355
    @gurpritsingh2355 5 років тому

    Absolutely stunning video... Great explanation...

  • @sandracordoba6090
    @sandracordoba6090 Рік тому

    Just brilliant!

  • @jaswanthtalada.
    @jaswanthtalada. 8 місяців тому

    thank you

  • @yichizhang795
    @yichizhang795 9 років тому +2

    Great explanation, thanks

  • @abhi99ps
    @abhi99ps 12 років тому

    Ya, I also realised that. They aren't on his site at all. I also found that some of his videos are on the channel "sal32458" instead.

  • @GBabuu
    @GBabuu 4 роки тому

    very well explained

  • @bhaveshohal3390
    @bhaveshohal3390 5 років тому

    That was so great.....Thank You.....

  • @funkymaniak
    @funkymaniak 8 років тому +3

    Absolute gold

  • @AS_tutor
    @AS_tutor Рік тому

    It seems like fun) Thank you!

  • @AsiaCrasie
    @AsiaCrasie 7 років тому +1

    I've got a question: in that top right diagram, what if the vector field in the middle of the surface curled in the opposite way as those on the outside (aka spin clockwise on the inside of the surface and counter clockwise at/near the line integral)? Would the opposing curls eventually cancel out and give a 0 for the line integral? If not (which the theorem suggests), does this mean that, during the transition between curls, the net curl in between the two directions gives a net counterclockwise curl?

  • @wooobooo1
    @wooobooo1 12 років тому +12

    insane mouse control!! o.O

  • @muhammadumar9753
    @muhammadumar9753 4 роки тому

    Thank you so much ❤️💕

  • @krkarthikeyan
    @krkarthikeyan 10 років тому

    Fantastic is an understatement

  • @drtamiz
    @drtamiz Рік тому

    Why do we dot it with the normal and not the tangential?

  • @jeffaschwarz
    @jeffaschwarz 12 років тому

    Where are these videos? I get emails when new Khan videos are posted on youtube, but it is not in any playlist on the site.

  • @purpk86
    @purpk86 12 років тому +2

    i LOVE your voice!

  • @AjayPatel-te4kb
    @AjayPatel-te4kb 5 років тому

    Tq so much sir🙏

  • @ChristopherMarkusLacapra
    @ChristopherMarkusLacapra 10 років тому +1

    thanks

  • @odvutmanush3234
    @odvutmanush3234 3 роки тому

    Omg. Thanks a lot Sal.

  • @suryaprakashsahu6142
    @suryaprakashsahu6142 10 років тому

    good explanation

  • @tjfirhfjejUTH24
    @tjfirhfjejUTH24 10 років тому

    great video thanks

  • @thReipoints
    @thReipoints 11 років тому +39

    anybody else has an upcoming exam and is cramming the night before?

    • @adhamsalama4336
      @adhamsalama4336 5 років тому

      Yep.

    • @Fiendnat138
      @Fiendnat138 5 років тому +1

      Wish me luck, test is on Thursday:>>!!!

    • @Ydmaster
      @Ydmaster 5 років тому

      @@Fiendnat138 hope you did well because I did really bad on my second midterm

    • @22Tech
      @22Tech 5 років тому +3

      yes but 6 years later

    • @oneinabillion654
      @oneinabillion654 4 роки тому

      My exam for calc3 in 2-3years. I'm studying this for field theory next semester. I dont know why the timetable is like that LOL

  • @sanchayadari
    @sanchayadari 8 років тому +1

    Awesome
    It made my day !

  • @সুমিতকর্মকার

    May I know which board or the background is used
    to write all those stuffs?

  • @Headrum
    @Headrum 11 років тому +3

    Your voice sounds considerably more wise in this video.

  • @RawdaAHafez
    @RawdaAHafez 2 роки тому

    That's amazing

  • @kamelalboaouh9595
    @kamelalboaouh9595 Рік тому

    how come the "contour" is treated as a surface "boundary"??

  • @abhi99ps
    @abhi99ps 12 років тому

    Its already 8 days since this video came about and its still not on the Khan Academy site. Also, this is not in the calculus playlist. Also, some of these videos are on a different channel instead (sal32458).

  • @moodaahmed7308
    @moodaahmed7308 9 років тому +1

    amazing mate just amazing

  • @rj-nj3uk
    @rj-nj3uk 7 років тому

    what if the curl is in middle but on sides fields cancel the curve traversal to have net 0 integration of field throughtout the curve.

  • @andrerossa8553
    @andrerossa8553 5 років тому

    great. tks

  • @Macoranino
    @Macoranino 10 років тому

    thanks a lot

  • @ztitan69
    @ztitan69 11 років тому

    thank you!!!

  • @hamzaabbasi8619
    @hamzaabbasi8619 8 років тому +1

    Great !!

  • @kuraignjenge4015
    @kuraignjenge4015 5 років тому

    yaaa this is helpful

  • @abhi99ps
    @abhi99ps 12 років тому

    Which playlist is this in?

  • @KumarHemjeet
    @KumarHemjeet 6 років тому

    The voice is of salman khan (founder of khan acaddemy).

  • @vinaychintu98
    @vinaychintu98 12 років тому

    superb

  • @PlayMadness
    @PlayMadness 12 років тому

    I knew some of those words!

  • @Podotoderoso
    @Podotoderoso 12 років тому

    Best Enchantress EU.

  • @anteil95
    @anteil95 9 років тому

    Very good explanation, however there's one thing confusing me.
    Looking at the bottom right surface, if you follow the border, the vectors on the border cancel each other out.
    But what if there is still one set of vectors left within the surface, pointing to the right (like khan drew it)? What if these vectors didn't find any complementary ones to cancel out with? Adding all the vectors together would thus not equal zero, although adding the ones on the border would.
    There are several other examples which would contradict Stokes' theorem.
    Can somebody explain please?

    • @benham118
      @benham118 9 років тому

      That's not quite the way it works because the vector field on the surface is continuous and so the vectors as seen in the diagrams wont actually cancel out in a discrete sense.

    • @inteusproductions
      @inteusproductions 9 років тому

      Munzu You look at each case separately, not to see if both of them satisfy it at the same time.

  • @IHeartViHart
    @IHeartViHart 12 років тому

    HALP! I have no idea what's going on!
    Suppose I should actually watch the preceding videos, but it's more exciting like this. xD
    Knowing kills the suspense.

  • @macmos1
    @macmos1 11 років тому

    I just finished cal II. I can't wait to learn cal III :)

  • @nmakarowski
    @nmakarowski 5 років тому

    i love it

  • @Jiwan01
    @Jiwan01 12 років тому +1

    Hi, I'm good at Mirror's Edge :)

  • @foundede
    @foundede 12 років тому +1

    AUTODIDACTS RULE!

  • @andreirocks1992
    @andreirocks1992 12 років тому

    Maaaath! Yes!

  • @SadatHossain01
    @SadatHossain01 3 роки тому +1

    King Salman Khan 👑👑

  • @NightbladeNotty
    @NightbladeNotty 10 років тому

    when you are referring to the curl of F you mean the Gradient x(cross) F right?

  • @SneakyJeffZ
    @SneakyJeffZ 8 років тому

    is n just a normal vector or does it have to be a UNIT normal vector?

    • @daviddavidson1090
      @daviddavidson1090 8 років тому +3

      unit. That's why it has a hat and not an arrow.

  • @spsxssd86
    @spsxssd86 11 років тому

    please stop saying more positive, im sure you mean a larger positive value

  • @fabiana37
    @fabiana37 12 років тому +1

    I love you

  • @RbtV92
    @RbtV92 11 років тому

    so you havent passed calc three in the last 14 months??