End Result Will Blow Your Mind!

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 97

  • @yashmehta9299
    @yashmehta9299 13 днів тому +16

    Much simpler way to do this.
    x^3 + 1/x^3 = (x + 1/x)^3 - 3(x + 1/x) = 0
    So x^3 = -1/x^3
    So x^999 = -1/x^999 by raising both sides to 333
    So x^999 + 1/x^999 = 0

  • @arulbiswas1260
    @arulbiswas1260 17 днів тому +51

    You could also use de'moivre's theorem. The roots are √3/2±i1/2 or z = {cos(π/6) +isin(π/6) }. We know, z^n = cosnx+isinx.

    • @AniketKumar-lw6su
      @AniketKumar-lw6su 16 днів тому

      Yea that's exactly how I did it too roots are W/i and its negative
      W³=1 and i³=-i.

    • @AdityaYadav-hm1rh
      @AdityaYadav-hm1rh 16 днів тому +1

      EXACTLY, bro just like to make it loooonngggg for no reason

    • @markvarga9507
      @markvarga9507 12 днів тому

      Good one, I usualy do it like e^i*π/6, but it is the same thing

  • @davidma16
    @davidma16 День тому +1

    That complex solution and 999 power really screams Moivre’s formula

  • @fareednadeem4266
    @fareednadeem4266 13 днів тому +15

    This type of easy questions is asked in government exams in India 😂😂

    • @arsh_arora10
      @arsh_arora10 8 днів тому

      But still we Indians proudly lag behind in mathematics and innovation. It's not about difficulty

    • @fareednadeem4266
      @fareednadeem4266 8 днів тому

      @arsh_arora10 yes because of the education system

    • @TanmaySharma-o7y
      @TanmaySharma-o7y 8 днів тому

      Also because of your mentality

    • @fareednadeem4266
      @fareednadeem4266 8 днів тому

      Not my mentality but most of the indian students.

    • @twinopedia7652
      @twinopedia7652 4 дні тому +1

      well then try to solve JEE ADVANCED MATHEMATICS(NOT of 2024)

  • @UttaraDhaka-v7t
    @UttaraDhaka-v7t 18 днів тому +76

    Ain't no way oxford has an entrance exam...💀

    • @vaskaktm
      @vaskaktm 18 днів тому +4

      i think it does

    • @Amit_Pirate
      @Amit_Pirate 18 днів тому +9

      The question is probably from 50 years ago

    • @irenehartlmayr8369
      @irenehartlmayr8369 18 днів тому

      What are the entrance requirements for Oxford then ?...and not everyone wants,or needs,a degree in mathematics!

    • @saturday9032
      @saturday9032 18 днів тому

      Wait till you hear about tmua

    • @saturday9032
      @saturday9032 17 днів тому +1

      @@irenehartlmayr8369 you get a different question depending on your subject. You get a question once you do your interview at Oxford, it basically contributes to whether you can make it into the school.
      For economics for example you'd get a question regarding the economy, choices or something else. If you give a good answer you'd be considered for a place in Oxford so it's essentially like an entrance exam

  • @abacademy8896
    @abacademy8896 17 днів тому +34

    when you got x^3 = -1/x^3... can't you just power 333 both sides and get x^999 = -1/x^999 and then simply x^999 + 1/x^999 = 0... what is the problem if we do this?? bcz I don't feel any problem doing this

    • @IamAlive-zk8jw
      @IamAlive-zk8jw 16 днів тому +6

      doing power 333 both side make this like this:
      x^999=-1/x^999
      x^999 + 1/x^999 = 0
      so this is verified by two trees so this is correct, you found a new way

  • @sanyalitvyak9571
    @sanyalitvyak9571 10 днів тому

    The complex exponential gives a hint that this can be generalised for x + 1/x = 2 cos(pi/2n) and x^n+1/x^n = 0. I think that the complex view gives quite a nice insight here.

  • @dsmithrus
    @dsmithrus 8 днів тому +1

    I just made a bruteforce.
    From the quadratic equation I got x1,2 = (√3±i)/2.
    Then, according to Moivre's theorem, x1,2 = 1*(cos(π/6) ± i*sin(π/6)) --> (x1,2)^999 = 1*(cos(999π/6) ± i*sin(999π/6)) = cos(π/2) ± i*sin(π/2)) = 0 ± i = ±i.
    Finally, by substitution, i+(1/i) = 0; (-i) + 1/(-i) = 0. The only answer is 0.

  • @paulortega5317
    @paulortega5317 17 днів тому +8

    Let f(x,n) = xⁿ + 1/xⁿ, find f(x,999)
    f(x,n+2) = f(x,1)•f(x,n+1) - f(x,n) = √3•f(x,n+1) - f(x,n)
    f(x,0) = 2
    f(x,1) = √3
    f(x,2) = 1
    f(x,3) = 0 and he sequence repeats every 12 terms
    So f(x,999) = f(x,3) = 0

    • @brain_station_videos
      @brain_station_videos  17 днів тому

      This is good. Btw how you figured out the second step? That recurrence relation..

    • @paulortega5317
      @paulortega5317 16 днів тому +2

      @@brain_station_videos It was related to a problem posed by Sybermath. I began with the general form of it: f(x,a)•f(x,b) = f(x,a+b) + f(x,a-b). Rearranging it to f(x,a+b) = f(x,a)•f(x,b) - f(x,a-b). Now let a = n+1 and b = 1.
      The next step was to come with a formula for the nᵗʰ row coefficients for f(x,n) where for f(x,1) = c, in terms of powers of c.
      c
      c² - 2
      c³ - 3c
      c⁴ - 4c² +2
      c⁵ - 5c³ + 5c
      c⁶ - 6c⁴ + 9c² - 2
      etc
      I figured out the formula and then discovered this was already known, per the On-Line Encyclopedia of Integer Sequences (OEIS). "A034807 Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials." Ha!

  • @penningmeestercgkdelft9159
    @penningmeestercgkdelft9159 12 днів тому

    It is much quicker to use Euler's formula and note that the absolute value of x is just 1, whereas its argument is either +i*pi/6 or --i*pi/6. Multiply the arguments each by 999 and cancel redundant cycli of i*2*pi, from which it follows that x^999 = x^3 = 1 and x^-999 = x^-3 =-1, or the other way round. In both cases, hence for both roots of x, the sum is zero. Nothing to blow our minds, I suppose!

  • @ezeonry
    @ezeonry 15 днів тому +1

    you can turn that x value into an exponential and then divide 999 by 12 too man

  • @pizza8725
    @pizza8725 9 днів тому +1

    Didn't expect to be this eazy

  • @abacademy8896
    @abacademy8896 17 днів тому +3

    also when we got x^3 + 1/x^3= 0, can't we just say that x*999 + 1/x^999 = (x^3)^333 + (1/x^3)^333... now as 333 is odd so it must has one factor= x^3 + (1/x)^3 = 0... Hence the whole expression becomes 0... so x^999 + 1/x^999 = 0

    • @NamLe-dp1mx
      @NamLe-dp1mx 15 днів тому

      That’s what I thought too

    • @yashmehta9299
      @yashmehta9299 13 днів тому

      No, because (x^3 + 1/x^3)^333 is not necessarily the same as x^3*333 + 1/x^3*333

    • @abacademy8896
      @abacademy8896 13 днів тому

      @@yashmehta9299 I am not doing this... we had got that x³ + 1/x³ = 0, so x³ =(-1/x³), now we can power 333 on both the sides and we will get- x⁹⁹⁹ =(-1/x⁹⁹⁹), now we will add 1/x⁹⁹⁹ on both the sides to get- x⁹⁹⁹ + 1/x⁹⁹⁹ = 0

    • @yashmehta9299
      @yashmehta9299 13 днів тому

      @@abacademy8896 ah, lol, yeah

  • @omerbar7518
    @omerbar7518 15 днів тому +1

    This is literally just square both sides define u = x^2 solve for u find x. Put in original equation and see if it works. Done.

  • @encounteringjack5699
    @encounteringjack5699 13 днів тому +4

    (e^(i[pi/6]))^999
    Multiply pi/6 by 999, divide 2(pi), now having 333/4, we get 83.25, which means we now have 2(pi)/4, which is pi/2.
    Now we have
    e^(i(pi/2))
    This will be at the bottom the fraction shown as 1/(x^999).
    Have e^(i(pi/2)) over 1 to form a fraction and multiply by e^(i(pi/2)) on top and bottom.
    The pi/2 and pi/2 will combine to make pi. Giving e^(i(pi)) which is -1.
    Denominators are the same and reduces down to zero. Same process can be used for
    e^(-i(pi/6)).

  • @kroX-x1d
    @kroX-x1d 18 днів тому +3

    bro pls upload more of there tricky questions more hard with good explanation ,,,,,[in same style]'''''''pls more '''thx

  • @Ashwinmathsclasses
    @Ashwinmathsclasses 6 днів тому

    Very nice😮😮😮😮😮😮😮😮

  • @vishalmishra3046
    @vishalmishra3046 11 днів тому

    *You were done mid-way (**1:43**) into the video*
    If x^3 = -1 / x^3 then x^999 = (x^3)^333 = (-1/x^3)^333 = -1/x^999. Therefore, x^999 + 1/x^999 = 0

  • @sriram.b5242
    @sriram.b5242 16 днів тому +2

    Ahh yesss 1 + 1/1 is indeed equal to root of three

  • @Changingcolors531
    @Changingcolors531 18 днів тому +5

    How to calculate this
    "10!"?

    • @Amit_Pirate
      @Amit_Pirate 18 днів тому +2

      n! = n(n-1)(n-2)(n-3)...(3)(2)(1)
      Therefore: 10! = 10×9×8×7×6×5×4×3×2×1

    • @yashmehta9299
      @yashmehta9299 13 днів тому +2

      Just say “10” loudly

  • @RahulChowdhury-y8r
    @RahulChowdhury-y8r 18 днів тому +4

    Nice☺☺☺☺☺☺☺

  • @Changingcolors531
    @Changingcolors531 18 днів тому +1

    How many ways the three balls can it be arranged when you get it from the group of six balls?

    • @prashantgupta43905
      @prashantgupta43905 17 днів тому +2

      First, we choose 3 balls out of 6 in 6C3 ways and then arrange them in 3! ways
      So the ans will be 6C3×3! = 120 👍🏻

  • @DavidGetling
    @DavidGetling 10 днів тому +1

    Try telling the truth. Unlike you, Oxford wouldn't embarrass itself by making a fuss over such SIMPLE quadratics.

  • @DEVISRIPRASAD-n9p
    @DEVISRIPRASAD-n9p 17 днів тому +1

    I solved it by substituting x (from the quadratic equation)in x^999 + 1/x^999 and by using de Moivre's theorem I got the answer zer0 .
    After I posted the comment and I saw you revealed another way also 😂😂

  • @Christopher-e7o
    @Christopher-e7o 13 днів тому

    X,2×+5=8

  • @rajjhalani4354
    @rajjhalani4354 7 днів тому

    It's too easy
    I did it by another method:-
    x+1/x= √3
    Squaring both sides,we get
    x²+1/x²=1
    Solving this,we get x²=-w,-w²
    (Where w & w² are cube root of unity)
    Now putting any value of x² in x⁹⁹⁹+1/x⁹⁹⁹ will give answer

  • @VIOLA4-D
    @VIOLA4-D 7 днів тому

    I don't know if my method is correct,
    I done it simply by differentiating separately and using log formula I got 0 as answer

  • @ThePandey-q1k
    @ThePandey-q1k 12 днів тому

    Bro we can manipulate root as cube root of unity 🫣

  • @wanabecoderguy7
    @wanabecoderguy7 18 днів тому +3

    make videos like ( or animation, to be more specific ) like 3blue1brown.

    • @heenakhandelwal8608
      @heenakhandelwal8608 18 днів тому +6

      He has his own style, and I respect that and also love it.
      Why make everything so complex when this itself is super easy to follow

    • @OsuAndChess
      @OsuAndChess 18 днів тому +2

      And it's also the fact that if he does this he'd get hate for exactly that, reminds me of all "Mrbeast" type of videos

  • @m9801
    @m9801 17 днів тому

    Tried avoiding the value of x to no avail

  • @acidomegapro4893
    @acidomegapro4893 7 днів тому

    It can be changed to a cube root of unity so…. Yeah

  • @SANTHKAMALT
    @SANTHKAMALT 17 днів тому

    Yes we can solve by euler formula🎉

  • @MATH-_-MATICSOP
    @MATH-_-MATICSOP 11 днів тому

    here x is - of complex no. W so W⁹⁹⁹ =1 so ans is 2

  • @kumkumsana409
    @kumkumsana409 11 днів тому

    I am an eight standard student . I solved this problem within 2 min .😂

  • @Hello1-t1y
    @Hello1-t1y 14 днів тому

    Pls I can't handle sin, cos, tan, pi, and i

  • @x.in_hype
    @x.in_hype 18 днів тому +6

    Let .
    Step 1: Express
    Using the exponential form of , we have:
    x = e^{i\pi/6}.
    x^{999} = \left(e^{i\pi/6}
    ight)^{999} = e^{i \cdot 999 \cdot \pi / 6}.
    Simplify the exponent:
    999 \cdot \frac{\pi}{6} = 166.5\pi = 166\pi + 0.5\pi.
    166.5\pi \mod 2\pi = 0.5\pi.
    x^{999} = e^{i \cdot 0.5\pi} = i.
    ---
    Step 2: Find
    The reciprocal of is:
    \frac{1}{x^{999}} = \frac{1}{i} = -i.
    ---
    Step 3: Compute
    Now, substitute:
    x^{999} + \frac{1}{x^{999}} = i + (-i) = 0.
    ---
    Final Answer:
    x^{999} + \frac{1}{x^{999}} = 0.

  • @AbdallahBOURAIMA-wh7et
    @AbdallahBOURAIMA-wh7et 18 днів тому

    Please can someone explain me how x^6 can be negative?

    • @Alphamatics1234
      @Alphamatics1234 18 днів тому

      Have u heard about complex number

    • @Rishith198
      @Rishith198 18 днів тому +2

      well it's complex....
      if u know about complex numbers then i= sqrt(-1)
      if x=i then x^6= -1
      as: i x i = -1 | -1 x i = -i | -i x i = 1 | 1 x i = i
      using this cyclicity of iota u will get the answer as -1

    • @AbdallahBOURAIMA-wh7et
      @AbdallahBOURAIMA-wh7et 18 днів тому +1

      @@Rishith198 thanks for the explanation though

    • @AbdallahBOURAIMA-wh7et
      @AbdallahBOURAIMA-wh7et 18 днів тому

      @@Alphamatics1234 I don’t know anything about them

    • @sirajzama8080
      @sirajzama8080 18 днів тому

      A simple one you got equation as x³=-1/x³ so multiply both sides by x³ you will get --> x⁶=-x³/x³. Cancel out x³ on RHS to get -1

  • @ethancooper4154
    @ethancooper4154 15 днів тому

    How did we manage to turn math into brainrot

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 8 днів тому

    {x+x ➖}+{1+1 ➖ }/{x+x ➖}={x^2+2}/x^2=2x^2/x^2=2x^1 (x ➖ 2x+1).6 3^3 (x ➖ 3x+3). {x^999+x^999 ➖}+{1+1 ➖ }/{x^999+x^999➖ }={x^1998+2}/x^1998=2x^1998/x^1998= 2x^3^2^3^2^2^3/x^3^2^3^2^2^3 2x^1^1^1^1^1^1^1/x^1^1^1^1^1^1^1 2x^1/x^1 2x^1/ (x ➖ 2x+1).

  • @IamAlive-zk8jw
    @IamAlive-zk8jw 16 днів тому +2

    i am an indian(asian) so this is easy for me

    • @rohitkaushik2311
      @rohitkaushik2311 13 днів тому

      Hello bro I am also indian. 😁
      Tumhara naam kya hai

    • @rohitkaushik2311
      @rohitkaushik2311 13 днів тому

      But I am in 10th grade.
      Aur mai Haryana se hu

    • @IamAlive-zk8jw
      @IamAlive-zk8jw 13 днів тому

      @@rohitkaushik2311 mai 9 grade me hu

  • @maybeyourbee
    @maybeyourbee 13 днів тому

    Ohhhh,my Head

  • @ManojkantSamal
    @ManojkantSamal День тому

    Omg!The answer may be zero.......
    Based on the key x^6=(-1)...(^=read as to the power )
    Explain later

  • @arekkrolak6320
    @arekkrolak6320 16 днів тому

    First equation is quadratic so you can solve in memory. Then substitute in second

  • @vishwa7180
    @vishwa7180 18 днів тому

    Very easy

  • @raghvendrasingh1289
    @raghvendrasingh1289 17 днів тому +2

    👍
    x+1/x = √3
    cubing both sides
    x^3+1/x^3+3x.1/x(x+1/x) = 3√3
    x^3+1/x^3 = 0
    x^3 = - 1/x^3
    (x^3)^333 = - (1/x^3)^333
    x^999 = - 1/x^999
    x^999+1/x^999 = 0
    other methods -
    (A)
    x^2 - √3 x+1 = 0
    by quadratic formula
    x = (√3 +/- i)/2
    x = cos π/6 +/- i sin π/6
    x = e^(+/- iπ/6)
    x^999 = e^(+/- 333πi/2)
    = { e^(2πi) }^{+/- 83) e^(+/- πi/2)
    = +/- i because e^(2πi) = 1
    in both case value of given expression is zero because reciprocal of +/- i is -/+ i
    (B)
    x^3+1/x^3 = 0
    (x^3)^2 = - 1
    x^3 = +/- i
    x^999 = (+/- i)^333 = +/- i
    because (+/- i)^332 = 1 as i^4 = 1
    in both cases value of given expression is zero.
    (C)
    x^3+1/x^3 = 0
    now x^999+1/x^999
    = (x^3)^333+(1/x^3)^333
    if we factorise it one factor will be x^3+1/x^3 hence answer is zero.
    (D)
    x = cos π/6 +/- i sin π/6
    x^999 = cos { 83(2π)+π/2 } +/- i sin { 83(2π)+π/2 } = +/- i
    x^999+1/x^999 = 0
    (E)
    by quadratic formula
    x = (√3 +/- i)/2
    x = i(- 1 - i√3)/2 , - i( - 1+i√3)/2
    x = iw^2 , - iw
    x^999 = i^999 , - i^999 because w^3 = 1
    x^999 = i^3 , - i^3 because i^996 = (i^4)^249 = 1^249 = 1
    x^999 = - i , i
    value of given expression = 0

  • @RiteshKumar-bp8dm
    @RiteshKumar-bp8dm 18 днів тому

    Hmm ... this question was a little bit of no. Theory good good 👍🏻

  • @blobthebobtheborb
    @blobthebobtheborb 9 днів тому

    oh hell no

  • @tingbrian5437
    @tingbrian5437 9 днів тому

    just use de moivre