Nice Exponent Math Simplification

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 113

  • @gonzalotapia1250
    @gonzalotapia1250 Рік тому +76

    (1+sqrt(5))/2 is the golden ratio (phi). It satisfies that x²=x+1, thus x³ = x(x+1) = x² + x = 2x+1.
    x⁴ = x(2x+1)
    = 2x² + x
    = 2(x+1) +x
    = 3x +2
    x^5 = x(3x+2)
    = 3x² +2x
    = 3(x+1) +2x
    = 5x + 3
    It's easy to see the fibonacci series in there. Following the series, we will have that:
    x^12 will be 144x + 89.
    In fact, if we use this notation (ax+b), the result of phi^n will have a=n and b=(n-1).
    Please, note that 89 is the 11th and 144 is the 12th terms in the fibonacci series. Now all you have to do is turn x into phi.
    144x + 89 = 144(1+sqrt (5)/2) + 89
    = 72 + 72sqrt(5) + 89
    = 161 + 72 sqrt (5)
    You can also see a pattern here.
    In the form (q + z*sqrt(5)), q (the rational part) will be (n/2 + (n-1)) = 3/2*n - 1, and the z (the irrational part) will be n/2.
    With this info, and as demonstration, we can easily calculate
    Phi^15, knowing that the 15th term of the fibonacci series is 610 and the 14th term is 377.
    solution: 682 + 305sqrt(5) ≈ 1364.00

    • @gonzalotapia1250
      @gonzalotapia1250 Рік тому +5

      Also, with every iteration, the decimal part of the phi power will approach 0.
      With phi^35, the decimal part will be 000000048...

    • @avalagum7957
      @avalagum7957 Рік тому +6

      Perfect. Much better than the solution in the video 😊

    • @atastra
      @atastra Рік тому +2

      this is a much better solution.

  • @mathboy8188
    @mathboy8188 Рік тому +11

    Exploit x^2 = x + 1 each time to always keep simplifying the intermediate expressions as the form ax + b.
    That keeps the numbers small and simple:
    x^3 = x(x^2) = x(x+1) = x^2 + x = (x +1) + x = 2x + 1
    x^6 = (x^3)^2 = (2x + 1)^2 = 4x^2 + 4x + 1 = 4(x+1) + 4x + 1 = 8x + 5
    x^12 = (X^6)^2 = (8x + 5)^2 = 64 x^2 + 80 x + 25 = 64 (x+1) + 80 x + 25 = 144 x + 89

  • @Hobbitangle
    @Hobbitangle Рік тому +26

    There's quite a simple solution if we note that x = φ, where φ is golden ratio, the fundamental of which is φ²=φ+1
    So we may subsequently substitute φ² while calculating φ¹² = (φ²)⁶=(φ+1)⁶=((φ+1)²)³=
    = (φ²+2φ+1)³=(3φ+2)³=
    (3φ+2)²(3φ+2)=
    (9φ²+12φ+4)(3φ+2)=
    (21φ+13)(3φ+2)=
    63φ²+39φ+42φ+26=
    144φ+89
    Finally we substitute
    φ=(1+√5)/2 and get the answer
    161+72√5

  • @miguelgnievesl6882
    @miguelgnievesl6882 Рік тому +17

    I think if x is cubed and then squared twice we get to the result faster.

  • @soniamartins9472
    @soniamartins9472 8 місяців тому

    Gostei muito professor! Realmente parece difícil, mas o senhor descomplicou. 👏🏻👏🏻👏🏻👏🏻👏🏻👏🏻

  • @wuchinren
    @wuchinren Рік тому +3

    Let φ=(1+sqrt(5))/2 which is the golden ratio, n is an integer and F(n) is the n-th term of the Fibonacci series, then
    φ^n=F(n-1)+φ*F(n).
    For example, φ^(-3)=F(-4)+φ*F(-3)=-3+2φ.

  • @shivachaturvedhi8840
    @shivachaturvedhi8840 7 місяців тому +1

    first cube it, then take 8 common and cancel it withdenominator . you get (2+sqrt(5))^4
    square two times. first time, get 9+4sqrt(5) , squaring this gives 161+72sqrt(5)
    simple way. isn't it?

  • @BluesChoker01
    @BluesChoker01 11 місяців тому

    X^n represents just one real number, for every power of X. The X variable has been isolated from the number values. We need only complete the simplification of X^12.
    I'm assuming that both exact and numerical approximation are requested. Exact include the radical 5, while approximations compute the answer according to your required precision.
    Yeah, definitely, *after mastering* these you might want to turn to infinite sequences in whatever books you use. It's basically the way to examine number relationships and turn these into a single algorithm. Figuring them requires understanding the proofs used to construct them.
    Infinite and geometric number sequences can be evaluated, if existing, to create a general formula. For example, the equation (N*(N+1))/2 computes the sum of all positive integers, from 1 to N, inclusive.
    Ex1: N=4,
    (4*(5))/2 = 10 = (1+2+3+4)
    This problem is simple enough to walk the power ladder: 2,3,6,12.
    Identity: (A+B)^2 = A^2+B^2+2AB
    Identity: (A/B)^n = (A^n) / (B^n)
    Using the power division rule, and if you've done much base 2 math, especially in computing, you'll almost hear the 2^12 denom scream 4096. That's the size of most computer architecture real and virtual page sizes. Anyway, we could just do the numerators and divide that solution by 4096. But I want you to watch the rolling iterations.
    I haven't done all of the math steps but do list the procedures and intermediate and final answers.
    Do one or two steps to see if the answers match.
    X1= (1+sqrt(5)) / 2
    X2= (X1 * X1)= 3+sqrt(5)) / 2
    X3= (X1 * X2)= 2+sqrt(5)
    X6= (X3 * X3) = 9+4*sqrt(5)
    Note that the denominator cancels out nicely at X3, not to return in this set of values.
    X12=(X6)^2
    =161+72(sqrt(5))

  • @bobtivnan
    @bobtivnan Рік тому +6

    This is actually not hard if you know the property that powers of phi have a connection to Fibonacci numbers. phi^n = F(n) + F(n-1)*phi. So in this case 144+89phi.

    • @PASHKULI
      @PASHKULI Рік тому +1

      amen, someone saw it

  • @ThankYouGoogle4
    @ThankYouGoogle4 10 місяців тому +1

    Good solution

  • @dannemman
    @dannemman Рік тому +1

    Por que não usou binômio Newton / triângulo de Pascal ??

  • @avalagum7957
    @avalagum7957 Рік тому +15

    Every solution in the comments is better than the one in the video 😊

  • @benjaminchang1382
    @benjaminchang1382 Рік тому +1

    It's a good demo for students to learn solution

  • @JoeDumais-w8h
    @JoeDumais-w8h Рік тому +7

    Even faster. Recognize that the value being raised to the twelfth power is the value of the Golden Ratio, R, that satisfies the equation R^2 = 1+ R. Each successive power, R^n, is equal to (can be reduced) to a +b*R, where a is the (n-1)th integer in the Fibbonacci sequence, and be is the nth one. So for R^2, a = 1, b=1. For R^3, a=1, b=2. For R^4, a = 2, b =3. For R^5, a=3, b=5.......For R^12, a=89, b=144. So the answer is 89 + 144*R. R=(1 +sqrt(5))/2. So 89+144*R = 89 + 72 +72*sqrt(5) = 161 + 72*sqrt(5)/

    • @waldekkapusniak9972
      @waldekkapusniak9972 Рік тому +4

      Nie każdy zna pojęcie złotego podziału,ciągu Fibonacciego itp.a wzory skróconego mnożenia większość. Zgrabne i przejrzyste rozwiązanie for every one.

  • @solidpixel
    @solidpixel Рік тому +82

    Nobody in their right mind would simplify that. It's the golden ratio to the 12th power. I'm positive that would result in bad karma.

    • @joachimschulz4792
      @joachimschulz4792 Рік тому

      Yes, equal to PHI^12...

    • @Nzargnalphabet
      @Nzargnalphabet Рік тому

      Actually, it should be extremely close to a Lucas number, and if you round the powers of phi, you will get the pure Lucas numbers, except obviously the first term, as that’s bigger than the second term, and that’s not how exponents of positive integer powers work

    • @junuzipalo4451
      @junuzipalo4451 Рік тому

      😆

  • @red5hat
    @red5hat Рік тому +1

    Brilliant, the easiest solution.

  • @周三金-b5p
    @周三金-b5p Рік тому +1

    所以到最后还是硬算出来的,你不如直接拆为2*2*3次方,直接算得了,由于2次的规律一致,还能节约点算法。

    • @大牧-j1p
      @大牧-j1p Рік тому

      可以用重根的公式,其實不難,普遍中國、台灣高中生都會

  • @jagadiswarchakraborty295
    @jagadiswarchakraborty295 7 місяців тому

    When the expression assumed as x, solutions is there.

  • @Dr.Pepper001
    @Dr.Pepper001 Рік тому +5

    A much simpler solution is to take the inverse proportion of delta 5 to the tertiary coherent function divided by the cotangent of {5 + 63} and predetect the log of the variable operator with a squared coefficient minus infinity. And there you have it.

  • @nishitverma1130
    @nishitverma1130 11 місяців тому

    I did it in my mind. The trick is to calculate the cube first and the do the 4th power

  • @danisoso8116
    @danisoso8116 Рік тому

    No me extraña que las Matemáticas sean unas de las asignaturas más odiadas.

  • @el_moscardon
    @el_moscardon 11 місяців тому

    Por qué no usar Binomio de Newton? Saludos.

  • @One-androgyne
    @One-androgyne Рік тому +1

    Bravo!!! 👏👏👏

  • @евгенийшаповаленко-е2х

    Без замены и используя формулу куба сумы двух чисел решается быстрее.

  • @Agof860
    @Agof860 Рік тому

    Fibonnacci
    Un+2=un+1 + un
    Solution = a GN^n + b o(GN)^n
    Hence GN^n matches fibonnacci with
    u0=1
    u1= GN
    u2 = 1+ GN
    u3 = 1 + 2GN
    u4= 2 + 3 GN

    u12 = 89 + 144 GN

  • @ajclinton9698
    @ajclinton9698 11 місяців тому

    Totally magnificent an optimum at finest😂❤

  • @dinomijatovic3921
    @dinomijatovic3921 11 місяців тому

    Where is exponent 12 in the end?

  • @walterwen2975
    @walterwen2975 5 місяців тому

    Nice Exponents Math Simplification: [(1 + √5)/2]¹² = ?
    Let: a = (1 + √5)/2; [(1 + √5)/2]¹² = a¹²
    a² = [(1 + √5)/2]² = (6 + 2√5)/4 = (3 + √5)/2 = 1 + (1 + √5)/2 = 1 + a
    a⁴ = (a²)² = (1 + a)² = 1 + 2a + a² = 1 + 2a + (1 + a) = 2 + 3a
    a⁶ = (a²)(a⁴) = (1 + a)(2 + 3a) = 2 + 5a + 3a² = 2 + 5a + 3(1 + a) = 5 + 8a
    a¹² = (a⁶)² = (5 + 8a)² = 25 + 80a + 64a²) = 25 + 80a + 64(1 + a) = 89 + 144a
    = 89 + 144[(1 + √5)/2] = 89 + 72(1 + √5) = 161 + 72√5
    Answer check:
    [(1 + √5)/2]¹² = 322, 161 + 72√5 = 322; Confirmed
    Math calculation was achieved on a smartphone with a standard calculator app
    Final answer:
    [(1 + √5)/2]¹² = 322 = 161 + 72√5

  • @Oleksii_Popov
    @Oleksii_Popov Рік тому +1

    1.618 в 12 степени. 322 будет. Неужели сложно калькулятором посчитать?

  • @UssrMegaNolik
    @UssrMegaNolik Рік тому +1

    (1+√5):2=1,618 (Fibonacci)

  • @istvange11ai
    @istvange11ai Рік тому

    Ф := (√5+1)/2
    Ф^n = fn * Ф + fn-1, where fn is the n-th Fibonacci number.
    Hence Ф^12 = 144Ф + 89, now you only need to expand it, 72√5 + 161

  • @laznweke1872
    @laznweke1872 Рік тому

    Conjugate it to get
    2 to power 12 as answer
    That is 32x32x2=32×64=2048

  • @mjtunstall1976
    @mjtunstall1976 Рік тому +4

    a smart way NOT to use a calculator!

  • @nianlisang7518
    @nianlisang7518 Рік тому +3

    简单问题复杂化,没完没了兜圈子。印度思维方式。😂

  • @enestoando4526
    @enestoando4526 Рік тому

    PERO HABLA, EXPLICA , DEDUCE!. RAZONAMIENTO, !!! PARA MUSICA SINTONIZO UNA RADIO FM.

  • @EynkiYoom
    @EynkiYoom Рік тому

    Great method. Well k own to some of us...but always good to see it on youtube for others.

  • @mauryadarshan
    @mauryadarshan Рік тому

    Without binomial theorem! nice

  • @gregorypeace6162
    @gregorypeace6162 Рік тому

    1. You're making it too complicated. x^2 ok, x^4 ok, x^8 ok, x^12=x^4*x^8.
    2.The final equal sign (=) should not be written as =>, please!

  • @cristcaminoa1
    @cristcaminoa1 Рік тому

    Hermosa resolución!

  • @ronaldnoll3247
    @ronaldnoll3247 Рік тому

    Super

  • @instafuny
    @instafuny 11 місяців тому

    It's not Simplify coz you're using more time algebra formula. This is complex for beginners

  • @НатальяБабухина-ь2ц
    @НатальяБабухина-ь2ц 11 місяців тому

    Bravo!!!

  • @ltrizzle12
    @ltrizzle12 Рік тому +1

    ……OR……plug it into a calculator. 🤔
    You’re going to plug the final simplification into a calculator for a concise numerical answer anyway.
    Therefore, just plug the initial problem into the calculator. And save a lot of time.
    *cough*

    • @trucid2
      @trucid2 Рік тому

      And learn nothing.

    • @ltrizzle12
      @ltrizzle12 Рік тому

      @@trucid2 Doesn’t change the fact you’re still going to use a calculator in the end to get the most simplified value. This exercise would have much more bearing if one could simplify ball the way to a result in pure numerical format without roots.
      Otherwise, it’s just a game of “go as far as you can until you have to use a calculator”.

    • @trucid2
      @trucid2 Рік тому

      @@ltrizzle12 You can't write down the exact answer numerically. You have to express it in terms of roots. The point of the exercise is to learn how to simplify expressions, not to get a numerical answer.

    • @ltrizzle12
      @ltrizzle12 Рік тому

      @@trucid2 You could progress one step forward and technically you’ve “simplified” it. The greatest simplification is producing a value as accurate as feasible. Having a problem with a root and leaving in terms of a root is sophomoric & futile when a calculator is required to get some semblance of numerical value.
      If you entered 6*pi into a calculator, would you be okay with the calculator producing back “6*pi”? Of course not. You’d want to see approx. 18.85 to make practical sense out of it. It’s irrelevant when you can TRULY simplify for a largely accurate value. Irrational value or not, even taking it out to 2 or 3 decimal places is sufficient for most intents & purposes of human enterprise.
      I’m more of a pragmatist; don’t leave a root in the answer when one can reasonably round an irrational value to several decimal places with the assistance of a calculator.
      Would you leave a root in the denominator of an expression you were attempting to simplify? Of course not, because of social convention. In that same context, I’d never leave an answer with any visible root when one small further step of using a calculator generates a sensible, overt, numerical value that is plainly discernible by all who read it.
      OR just use the dang calculator from the onset of the problem-like I initially recommended-for an instant numerical solution. See? Took a wee bit, but we came full circle. 😎

    • @trucid2
      @trucid2 Рік тому

      @@ltrizzle12 The problem asked to simplify, not give an approximate value. If you were to do that on a test, you would not get full marks, if at all.

  • @THEINDUS-river
    @THEINDUS-river Рік тому

    U make it longer

  • @jacksonneves4578
    @jacksonneves4578 Рік тому

    Muito interessante !!

  • @mauriziograndi1750
    @mauriziograndi1750 Рік тому

    Impressive, but too long, mathematician enjoy short elegant solutions not tedious ones and striving to find them.

  • @蔓澤蘭-v2m
    @蔓澤蘭-v2m 10 місяців тому

    I use a simple method,guickly get answer.

  • @tasoskotaras2738
    @tasoskotaras2738 Рік тому

    At 3:50, instead of setting x^12 = (x^2)^6, we could rather consider ((x^3)^2)^2. We therefore find x^3 and then we square two times.
    It is very easy to find x^3:
    x^3 = x^2.x = (x+1)x = x^2 + x = (x +1) + x = 2x + 1.
    So we now square this two times. The first square: (2x + 1)^2 = 4x^2 + 4x +1 = 4(x+1) + 4x + 1 = 8x + 5 .
    We square again: (8x + 5)^2 = 64x^2 + 80x + 25 = 64(x+1) + 80x + 25 = 144x + 89.

    • @master_sergik
      @master_sergik Рік тому

      how x³ can be equal 2x + 1? 🙄
      check it if x=2:
      2³ = 2*2 +1
      8 = 5
      😒
      x=3:
      27 = 7
      🙊
      x = 10:
      1000 = 21
      🤦🏻‍♀️

    • @trucid2
      @trucid2 Рік тому

      @@master_sergik The x in the video is phi, which is (1 + sqrt(5))/2. It's not an arbitrary number.

    • @tasoskotaras2738
      @tasoskotaras2738 Рік тому

      @@master_sergik You apparently missed that x is not an 'unknown' but a very specific number. It is the number that is raised to the 12th power. Maybe the choice of the letter was not the right one, and this is what confused you. Probably φ would be more appropriate, as (1+sqrt(5))/2 is the so called "golden ratio". But the name of the variable is irrelevant.
      In any case, if the specific number (symbolized by x, or φ, or whatever) is squared, we get the number plus one. If we cube it, we get it two times plus one. And so on...

    • @master_sergik
      @master_sergik Рік тому

      thanks for explaining, it is new info for me 👍

  • @enestoando4526
    @enestoando4526 Рік тому +1

    SPEAK LOUD, EXPLAIN, DEDUCE, REASONS, !!! DON'T NEED MUSICAL INSTRUMENTAL, I'D BRTTER SINTONIZE AN FM RADIO!.

  • @bikramkesharipradhan1426
    @bikramkesharipradhan1426 6 місяців тому

    too lengthy procedure

  • @eduardomendes919
    @eduardomendes919 Рік тому +1

    (72√5 + 161)

  • @ph.so.5496
    @ph.so.5496 Рік тому

    Gold number ^22...😉

  • @Mallarkey
    @Mallarkey Рік тому

    Is it BECAUSE of the Golden Ratio that the surd part of the solution (=160.99689438) which is almost equal to the rational part of the solution (161).
    Do I need to go back to studying the Golden Ratio?

    • @Mallarkey
      @Mallarkey Рік тому

      Also ((1+sqrt5)2)^6=9+4sqrt5 and 9 ~ 4sqrt5 so I suspect I've answered my own question and we're tending towards an equivalence here. Please enlighten me.

  • @mehmetkızkapan0708
    @mehmetkızkapan0708 11 місяців тому

    Uyku getirdiniz
    Yorumlarda herkes çözdü size yetmez diye kağıt gönderiyorum

  • @CrikeyWho
    @CrikeyWho Рік тому

    On my watch you use a calculator. It’s 321.9969.

  • @AlfonsoEscalante-n2c
    @AlfonsoEscalante-n2c Рік тому

    Esto es demasiado facil...
    Yo recrro a mis derivadas y difirenciales,a mis teoremas de exponentes, a raices explicadas como 1/?según la raiz..
    Ponme algo mas diicil.como derivadas infinitas

  • @vitaliyruban2538
    @vitaliyruban2538 Рік тому

    φ¹²=89+144φ,
    φ¹²=161+72√5.

  • @artempahotin9910
    @artempahotin9910 11 місяців тому

    I calculated it in my mind faster

  • @ЧЁкнутыйдед
    @ЧЁкнутыйдед Рік тому

    Ну и чо? Как было так и осталось, с небольшими изменениями...

  • @Aben-qb4uy
    @Aben-qb4uy Рік тому

    😮

  • @leoncarvalho7533
    @leoncarvalho7533 11 місяців тому

    Me, an intellectual: φ¹²

  • @Rai_Te
    @Rai_Te Рік тому

    Painful.

  • @CharlesChen-el4ot
    @CharlesChen-el4ot 4 місяці тому

    答案就是
    m + n SQRT(5)
    m , n .不漂亮無聊 !

  • @omaraladib2165
    @omaraladib2165 Рік тому +1

    لماذا كل هذا التعب من البداية نعمل على التمرين بدون فرض x

  • @iliyakarelin1984
    @iliyakarelin1984 Рік тому +3

    вот извращение на потерю времени,

  • @prashantpandya1508
    @prashantpandya1508 Рік тому

    First of all you need to learn not to complicate things...
    Instead of uploading video on UA-cam asking to simplify it!!!😅😆🤣😁😂

  • @jrm4728
    @jrm4728 10 місяців тому

    323

  • @黒といにゃー
    @黒といにゃー 8 місяців тому

    懐かしい

  • @ashton7966
    @ashton7966 Рік тому

    Put it in a calculator

  • @pascalgotlib1781
    @pascalgotlib1781 Рік тому

    Faire une division euclidienne ou un Hörner aurait.ete plus simple

  • @entp329
    @entp329 Рік тому +1

    황금비율인걸 알아도 좋고
    그냥 차수줄이기로 풀어도 되는
    고1수학 중상난이도 문제로도 있는
    평범한 문제

  • @artavazd0
    @artavazd0 Рік тому +1

    Дурачится. Сразу видно. что не советское образование получил

  • @ukidding
    @ukidding Рік тому

    Music is not golden to any degree

  • @遠傳五華
    @遠傳五華 9 місяців тому

    Devide and conquer... ()^12=((()^2)^2))^3 is really easy to get the final answer.

  • @surajitjana9464
    @surajitjana9464 Рік тому

    Dhur chata ki6ui Boja jaini

  • @ramachandraramachandra8004
    @ramachandraramachandra8004 Рік тому

    Shake Mohamed bin thogaluk Mathematics burude mela, mamde mela, tharadu mela, thale mela, =

  • @Activan1
    @Activan1 Рік тому +1

    321.99?

  • @aguscahyono444
    @aguscahyono444 11 місяців тому

    knp gk x^2^2^2. x^2^2

  • @user-qi1fg5gg7d
    @user-qi1fg5gg7d Рік тому

    = ϕ¹²

  • @alexiscm72
    @alexiscm72 10 місяців тому

    Too long and innecesary solution.

  • @Jedidias_68
    @Jedidias_68 10 місяців тому

    Que perdida de tiempo.
    Mejor tomo mi calculadora y lo resuelvo en 1 minuto

  • @sumitkumar-frw
    @sumitkumar-frw 11 місяців тому

    Bro I got it in 20 seconds 😂

  • @pavlinux
    @pavlinux 11 місяців тому

    Is this a simplification? Now count how many operations you performed to simplify? 🤣🤣🤣

  • @pedrofajardo8137
    @pedrofajardo8137 Рік тому +1

    Y el triangulo de pascal????

  • @osvab000
    @osvab000 Рік тому

    ~322

  • @ToanPham-wr7xe
    @ToanPham-wr7xe 7 місяців тому

    😮

  • @CharlesChen-el4ot
    @CharlesChen-el4ot 4 місяці тому

    答案就是
    m + n SQRT(5)
    m , n .不漂亮無聊 !