Time Series Forecasting using ARIMAX and SARIMAX Model

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 25

  • @nehag3688
    @nehag3688 5 років тому +1

    Thanks sir for the video this time series modules are really very helpful

  • @SandeepYarramreddy
    @SandeepYarramreddy Рік тому

    Can we use Categorical variables(One hot encode them) as exogenous variables

  • @turbophilable
    @turbophilable 3 роки тому

    Thanks nicely explained ...very helpful

  • @sachingoud6064
    @sachingoud6064 4 роки тому +1

    please give links to the videos where you have explained the methods to choose p,d,q values.

  • @tempura_edward4330
    @tempura_edward4330 4 роки тому

    Great video! Thank you!

  • @dicloniusN35
    @dicloniusN35 2 роки тому

    Error Out-of-sample operations in a model with a regression component require additional exogenous values via the `exog` argument.

  • @Han-ve8uh
    @Han-ve8uh 3 роки тому

    What exactly does external factor mean?
    Can i just call a variable an external factor if i leave it out of the regression model?
    The definition uses words like direct/indirect effect, but how do we know what is direct or indirect? Is this some objective truth?

  • @zollen123
    @zollen123 3 роки тому

    Does the esog param support more than one column of data? Do these esog params need to be stationary as well?

  • @maqsadehayat3929
    @maqsadehayat3929 5 років тому +1

    You are discussing the implementation process but what results we got it after it you are not focusing on it. means the interpretation of that outcome....

    • @MAK335
      @MAK335 4 роки тому

      exactly

  • @rahulrokade2048
    @rahulrokade2048 4 роки тому

    Hello Sir,
    im getting 'cannot perform reduce with flexible type ' this error
    How Can i fix this ?

  • @nicolasmelomartinez3237
    @nicolasmelomartinez3237 3 роки тому +1

    great video. can you do it in R studio?
    how can i add another exogenous variable ?

  • @lollmao249
    @lollmao249 2 роки тому

    hello, thanks, but you didn't add exogenous variables

  • @nesofogos
    @nesofogos 3 роки тому

    How do you use more than one exogenous variable?

    • @simoneliasgonzalez3845
      @simoneliasgonzalez3845 Рік тому

      Hi Thiago, did you solve this doubt? I got the same one

    • @nesofogos
      @nesofogos Рік тому +1

      @@simoneliasgonzalez3845 if you have two exogs a = [1, 2.3 ...n] and b = [5,6,7 ...n] you may do:
      list_exog = [a,b]
      exog = np.column_stack(list_exog)
      Then you just add to the SARIMAX function exog = exog.

  • @eclairesstudio7608
    @eclairesstudio7608 5 років тому

    Can we predict job waiting time with arima

  • @nehag3688
    @nehag3688 5 років тому

    A multivariate time series analysis would be really helpful for further analysis

    • @ebendaggett704
      @ebendaggett704 4 роки тому +4

      Honestly, a crystal ball would just solve all of my problems... haha

  • @happinessevryw
    @happinessevryw 4 роки тому

    Excuse me sir, i want to ask you..
    Is the ARIMAX model can use to forecast disease cases with climate factors as exogenous variables?

  • @SimonZimmermann82
    @SimonZimmermann82 Рік тому

    "a very high inflaton figure... - usually doesnt happen like that" - 2023: hold my beer

  • @mathclub_zara
    @mathclub_zara 3 роки тому

    very good video

  • @umakanta7
    @umakanta7 5 років тому

    can we say i can apply this multivariate time series or can this concept be applied to multivariate time series as well.

    • @andrewdisher2086
      @andrewdisher2086 3 роки тому

      it can be applied to multivariate time series in the way I believe you are thinking. Technically, the ARIMAX model, which predicts a given variable using one or more exogenous variables, is already multivariate. But i believe you can apply this to multivariate models, like VAR models.

  • @davidrod2865
    @davidrod2865 5 років тому

    Thanks and suscribed