數據分析轉職 | 為什麼99%轉職數據分析的人都失敗了? | 大幅提升成功率的轉職方法

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 251

  • @江重勳
    @江重勳 Рік тому +55

    最近接觸商管圈子又接觸數據分析,老實說大大的觀點真的很正確。商管的世界和工程很不同,大多數時候硬實力不是決勝負的關鍵,一直執著要打好基礎還是學很扎實真的只是在浪費時間,跟很多管顧相關的人相處後也能感覺到,那些顧問確實厲害,在處理問題上的思維跟手段也不是一般人能比的,但那不是因為他們真的聰明到哪去,而是因為他們有那個環境跟導師讓他們學習,因此如何把自己送進正確的環境真才是最重要的第一步。

  • @HowardLinca
    @HowardLinca Рік тому +54

    謝謝Ben的分享! 非常認同影片當中所說: 要轉職數據分析的重點是打造一份履歷 沒有關係的東西不用先學

  • @hsintong177
    @hsintong177 Рік тому +24

    身為本科系看這部影片前半段確實有邪魔歪道感,但也不得不讚嘆用有策略的角度去規劃取得一份工作非常聰明,影片本身的節奏掌握也很棒,尤其是結尾的字卡超振奮人心

  • @m7807031
    @m7807031 Рік тому +28

    真的是非常有料的內容! 感謝你的分析與分享!
    我自己也是非資工本科出身,在傳產的路上半途出家開始自學程式的人。曾經覺得這是不可能的事情,但是靠著運氣與不要臉的多多嘗試,總算轉職到目前的資訊業工作。
    因為自己走過自學程式的過程,所以對 Ben 提到的 "先學好再去面試" 導致的無助感,真的是非常能夠體會。想想那時候白天工作已經精疲力盡,結果下班後面對數不盡的 "資料科學必備基礎",那種一輩子不可能讀完的絕望感,非常的可怕。
    好在後來如同Ben所提到的: "天下武功,唯快不破",我用盡我能達到的最快速度完成莫煩Python與數據處理的課程,只做了一點 tutorial 就開始不要臉的面試,運氣很好的被現在的公司看中我的 [ 專業能力+程式基礎 ],得到了現在的工作。
    謝謝Ben的這個影片,讓我對於當初的成功有了概念,同時也知道下一份工作的規劃,我要再度 Focus 在哪個方面,非常期待之後不同的影片分享,謝謝!

    • @BenHsu501
      @BenHsu501  Рік тому +1

      感謝回饋 😁😁

    • @bickyyang
      @bickyyang Рік тому +2

      您好,我也是傳產且非資工本科,想請教您當初自學程式到轉職開始面試大約花了多少時間呢? 轉職後會覺得很吃力嗎?

    • @m7807031
      @m7807031 Рік тому +14

      @@bickyyang 我自學程式斷斷續續大概1年半左右,轉職後剛進去公司很怕被別人發現實力不夠,但是其實根本沒人在乎。工作上不管你是不是資工,新人進去就是從0開始學習公司的作法,所以不用擔心,臉皮厚一點就對了

    • @bickyyang
      @bickyyang Рік тому

      @@m7807031 感謝分享!

  • @peterlu3434
    @peterlu3434 Рік тому +9

    思路很棒,出社會後找工作、轉職都是很現實的問題,不像是學生一樣可以光靠努力學習來填上差距。
    我認同轉職的學習應該是以目標導向為主,讓自己的累積的時間跟經驗可以更靠近自己想要做的工作。

  • @masaaaa0223
    @masaaaa0223 Рік тому +8

    謝謝您的指點,不禁感嘆Ben真的腦袋好清晰啊,表達方式也很平易近人!
    轉職路上真的很容易遇到一些意外,導致陷入心慌慌。我最近遭遇了兩個朋友的內推職缺,都在拿到Offer的臨門一腳被朋友的公司高層臨時收回職缺不招了…
    影片最後的Summary流程超讚,看到自己明確的路真的有比較定心一點。

  • @RayHuang-tk8dx
    @RayHuang-tk8dx Рік тому +10

    太強啦,超級目標導向,又很有策略思維

  • @joanlee9393
    @joanlee9393 10 місяців тому +1

    內容實在太棒了! 真心感受到你是從非本科的角度來提供適合且實用的資訊,為我們這種想踏入資料分析、資料科學的人指引了一條明確的路。
    敲碗分享更多資料分析的影片🍿️ 祝頻道人數暴漲!

    • @BenHsu501
      @BenHsu501  10 місяців тому

      感謝回饋~

  • @in32519l28
    @in32519l28 10 місяців тому

    4個影片都看完了, 對於真的有轉職經驗,而且轉職後薪資大幅提升的過來人
    講得真的很貼切,沒有任何多餘的包裝 或空話

  • @屎內卜
    @屎內卜 Рік тому +13

    本身是非相關科系的應屆畢業大學生,最近對於怎麼準備感到非常迷茫、慌張,但看了你的影片之後找到了一個很明確的目標,希望能夠一切順利,也謝謝你的影片~期待之後看到更多精彩實用的內容!

  • @a94763075
    @a94763075 Рік тому +6

    我本身也是Data Scientist,
    我認同這些的確是快速的捷徑,而且真的講得不錯,都在刀口上,
    但對於"先取得面試的機會就可以拿到工作的機會來打基礎"不太認同
    開始上工後,可能會因為基礎不夠,不適應工作而快速被打回原形,
    可能會花大把下班的時間來惡補這些知識。

    • @BenHsu501
      @BenHsu501  Рік тому +9

      感謝回饋。你提到的惡補正是他們需要做的,也是轉職者應該要承擔的,畢竟事實就是實力不如人。

  • @wonderful-lu8xe
    @wonderful-lu8xe Рік тому +10

    雖然沒有要轉職數據分析師 但有在思考要轉職
    感謝作者提出了轉職者遇到困境以及轉職的技巧

  • @15151447zoe
    @15151447zoe Рік тому +3

    這個影片太強了! 甚至可以應用在如果準備一個履歷的思維上🎉🎉獲益良多

  • @flyflower8899
    @flyflower8899 9 місяців тому

    作個筆記,謝謝!(這對面試概念也有幫助)
    12:40 有價值的數據分析(個人覺得看自已產業,是否可以提供有用的訊息)
    那些顧問確實厲害,在處理問題上的思維跟手段也不是一般人能比的,但那不是因為他們真的聰明到哪去,而是因為他們有那個環境跟導師讓他們學習,因此如何把自己送進正確的環境真才是最重要的第一步。

  • @john1236543
    @john1236543 Рік тому +16

    現在競爭激烈
    非本科的人機會太少
    尤其是沒有碩士,人資或是主管挑履歷就挑掉了
    甚至因為做AI ML論文高產出,一堆沾到邊的科系或是實驗室都來做。
    感覺市場漸漸飽和,但這只是2023/Q2目前的景氣現況,後續可能就業市場會好一點。

    • @BenHsu501
      @BenHsu501  Рік тому +16

      看用什麼角度看這件事情,資訊科系的人,不走AI也能有好工作,很多就是為了畢業寫論文;轉職者,不嘗試就是繼續領原本行業的薪水。一個是為了文憑,一個是為了生活。
      至於難不難,轉職一定是難的,但還是有諮詢者轉職成功。

  • @chavezyong6553
    @chavezyong6553 Рік тому +4

    本科金融,大学参加很多活动,没认真学习,毕业后通过自学python(基础)。
    后来找到相关的IT教学工作,因为有了3年的工作经验,再通过自学数据分析知识,9个月内成功转职为数据分析师。
    纯属分享个人经历,希望大家都能找到自己喜欢的工作 😊

    • @BenHsu501
      @BenHsu501  Рік тому

      謝謝分享,希望大家都能有更好的職涯

  • @linjasper152
    @linjasper152 Рік тому +8

    我也是商管學士轉職Data scientist的例子 蠻建議可以直接參加比賽(or sideproject) 然後用做的事來側面闡述自己的能力
    非本科轉職數據也是有優勢的 建議對自己領域相關的數據應用多做研究 不要做太廣

    • @BenHsu501
      @BenHsu501  Рік тому +6

      感謝回饋。我也會建議轉職者參加黑客松,不過得先做完side proeject在參加,因為轉職者通常沒有從data看任務的思維,就會錯失很多角度。

  • @humble963
    @humble963 Рік тому +1

    謝謝ben,目前畢業滿一年,一直有轉職的念頭,這部影片讓我方向更明確了~

  • @veralyu1913
    @veralyu1913 Рік тому

    有种醍醐灌顶的感觉,听完你这个视频。我老公是后端developer,他一直跟我讲你说的这个概念,但是我一直都不是特别认同也不懂。但是听完你的分析之后,我终于明白我老公想表达的意思,也更加有方向感。我想看更多你的影片,发现你只有四个,哈哈哈。

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝支持,主要影片花時間,之後傾向拍短影片,但可能就不能帶出整體概念,變成碎片的知識。

  • @abcrulvm6qu04
    @abcrulvm6qu04 Рік тому +21

    內容不僅很好 還給想要轉職的人莫大的幫助和清晰的實踐途徑
    非常感謝Ben!
    一定會按讚訂閱加分享的!

  • @kino7349
    @kino7349 Рік тому

    哇!大感謝,真是乾貨滿滿耶!
    特別是數據集和成功者筆記的部份。
    以前自學大數據,最麻煩的就是數據集,就算真的爬蟲到一些可能有用的資料,但都還要標示化什麼的,超麻煩。
    成功者筆記感覺也相當有助於摸索學習方向,不然面對知識海洋,真的會很難下手,不知從哪開始。
    雖然也不知成功可能性有多少,畢竟真的準備進攻,也謹謹是因為興趣。
    如果是為了生活,那還不如在防守上再多下點努力,反正現在也算是還不錯了。

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝回饋。沒有時間壓力、有興趣,唸個在職學位是不錯的選擇,未來也有操作空間。

  • @booker0hsu
    @booker0hsu 10 місяців тому

    謝謝!

    • @BenHsu501
      @BenHsu501  10 місяців тому

      感謝回饋~

  • @bickyyang
    @bickyyang Рік тому +3

    一開始只是在工作上遇到簡單的數據分析(傳產的數位轉型),逐漸開始對數據有興趣,嘗試往這個方向發展。但是我利用下班時間學習時卻感到很茫然,不知道要從哪裡入手,甚至看10分鐘的影片就睡著😢... 感謝作者分享點出盲點,頓時覺得豁然開朗🎉

  • @summer11468
    @summer11468 5 місяців тому

    一針見血的討論 真的好棒喔!!! 感受到您真的很用心 可以多分享影片嗎?? 講得真的非常好😄

    • @BenHsu501
      @BenHsu501  4 місяці тому

      感謝你的回饋,之後有時間還會分享,如果有問題的話,可以直接問卷詢問,會更有效率 🤣

  • @benoit5566
    @benoit5566 Рік тому +3

    這篇教的是面試技巧,很實用。
    當初我自己研究的跟你講得差不多。

    • @BenHsu501
      @BenHsu501  Рік тому +2

      確實,殊途同歸,我也只是換個角度分享出來,讓大家可以有一些啟發

  • @vivianlin920-SS5
    @vivianlin920-SS5 6 місяців тому

    天哪分享的論點都深入淺出,非常易懂
    謝謝你的分享🫶🏻

  • @CeliaLeetw
    @CeliaLeetw Рік тому +5

    適用其他行業的轉職技巧,感謝

  • @neochen5213
    @neochen5213 Рік тому +4

    內容不錯,很實在,有寫在履歷上的,有在面試講出來的,面試官才有看到,學再多沒表現出來就沒用。
    我也給個建議: 收音有點模糊不清楚,可以研究下怎麼解決。跟面試一樣,內容很好但聽不清楚,可能看的就比較少,就可惜了

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝建議,收音確實沒有經驗,我再研究研究

  • @y.o_s.h.i_m.i
    @y.o_s.h.i_m.i Рік тому

    好正確心態🥹 最近才自己很有感意識到這件事!
    雖然拖了半年多才真的有要開投履歷 但這中間有去比了幾個專案競賽也有得名
    11 月會找到工作的❤

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝回饋,祝你找工作順利

  • @good_sushi
    @good_sushi Рік тому

    非本科轉職路上來留言,謝謝 Ben 給予很大程度的方向感!

  • @hanaG-e2y
    @hanaG-e2y 5 днів тому

    超级干货啊!要是早半年看到就好了,现在转职简历没人看,Ben可以帮忙改履历吗?求联系!

  • @YC9-ty2qj
    @YC9-ty2qj Рік тому

    感謝BEN的影片讓我重燃轉職的希望

  • @gary12216
    @gary12216 Рік тому

    轉職角度來說 有夠中肯!

  • @Kalos351
    @Kalos351 Рік тому

    很精闢 很清楚 超級無敵推推

  • @linyenting6170
    @linyenting6170 Рік тому

    太感謝了 一直處在盲點

  • @nikasjostrom9332
    @nikasjostrom9332 Рік тому

    Ben,非常感谢这期节目。你解决了我一直以来的犹豫和困惑。大大点赞! 醍醐灌顶! 非常感谢!😊

  • @linyan2654
    @linyan2654 Рік тому

    轉職軟體工程師 看到這部影片很有幫助

  • @dolphinchen1823
    @dolphinchen1823 Рік тому

    大大您真是太優秀了

  • @wqf4062
    @wqf4062 10 місяців тому

    谢谢分享,建筑师准备按推荐的方法进行实践转行,感谢。

    • @BenHsu501
      @BenHsu501  10 місяців тому

      感謝回饋~

  • @hyc1984tw
    @hyc1984tw Рік тому +7

    Hello Ben
    謝謝你的經驗分享,如果我在早兩年看到你的分享,我的轉職或許會比較容易。我很幸運在自學後成功找到一份entry level的數據分析師,然後有機會加入公司的機器學習項目。目前在公司的AI項目負責做模型訓練、分析訓練結果然後制度訓練策略,並且包含數據清理與數據標註。我有很多問題關於在資料科學要走的路,本身過去有理工相關的科學研究經驗,會SQL與Python,但是不是資料科學與電腦科學的本科出身。現在做模型訓練的工作可以接受,請問在這個圈子要走得遠一點需要累積MLE相關的經驗或模型開發的經驗嗎?另外,請問有建議考取什麼證照嗎? 謝謝你的分享 ❤

    • @BenHsu501
      @BenHsu501  Рік тому +1

      怎麼走遠一點,要看你的目標是什麼。如果是薪水,那首要可能是怎樣跳到下一個領域、公司。而MLE確實在專業更廣,可以說包了DS。但MLE職位內的各領域也很雜,不同MLE的技能差異也大。但模型開發算是MLE的需要具備的能力。至於證照,可能要看走向哪一種MLE,如果雲端可能需要,但若有實務經驗更好。

  • @asonE-df9nh
    @asonE-df9nh Рік тому +5

    正在轉職很慌的人⋯看到你的建言真的知道自己做錯很多事情了⋯不知道那邊可以找您健檢履歷🤔

    • @BenHsu501
      @BenHsu501  Рік тому

      資訊欄下面有問卷,直接發過來

  • @tinalee9300
    @tinalee9300 Рік тому +75

    Summary:
    1. 熟悉Python, 程式語言的基礎
    2.擁有數據分析的基礎,用經典的資料及目標領域資料練習。
    3. 做有價值的 side project
    4.準備面試

  • @ChingChing-h5w
    @ChingChing-h5w Рік тому +1

    講得很好欸受益良多

  • @hobbitliu7501
    @hobbitliu7501 Рік тому

    講得很好!!給推給推

  • @heyheyuni
    @heyheyuni Рік тому

    非常感謝你的分享!

  • @吳彥旻-q8t
    @吳彥旻-q8t Рік тому

    很有料的內容~啟發很大 謝謝!!

  • @xhotdog100
    @xhotdog100 9 місяців тому

    老师,感谢分享。你觉得data analysis boot camp怎么样?他们的课程设置都是以找到工作为导向的,就是做capstone projects, 填充履历,学需要的知识和技能,绝不学多余的,一般在半年左右就可以搞定。缺点是,不便宜,而且没有学位,如果跟念一个硕士比较。美国有很多。想听听你的看法。谢谢!

    • @BenHsu501
      @BenHsu501  8 місяців тому

      我認為是有用的,因為即使是一般碩士,畢業時仍然需要有project展現在履歷上。當然,碩士更多很多是在寒暑假去實習。
      當你做這個選擇(DA boost camp或是自己做專案),如果希望達到與一般碩士相同的職涯水平,那你的project得真是頂尖的。但如果是期望從基礎的公司開始,是沒問題的。有美國的諮詢者就是從基礎BA開始做,就看之後發展

  • @ArthurWei
    @ArthurWei Рік тому

    讚啦! 期待更多影片

  • @TheSam888888
    @TheSam888888 Рік тому

    很棒! 多放一些影片吧!

  • @ac.23z
    @ac.23z Рік тому

    策略正確 ✅ 邏輯清晰 🙆

  • @kabisnorlax
    @kabisnorlax Рік тому

    非常有用,謝謝!

  • @yangeric6663
    @yangeric6663 Рік тому

    謝謝寶貴的經驗分享

  • @peiwind238
    @peiwind238 Рік тому

    很棒的觀點 做法很有效率誒

  • @jadeg111
    @jadeg111 Рік тому

    哇 好棒 真的干货满满 感谢分享 🎉❤

  • @donwang9117
    @donwang9117 10 місяців тому

    非常好的内容,感谢

  • @MingShingLi
    @MingShingLi Рік тому

    說得很好 !

  • @francotsoi1302
    @francotsoi1302 Рік тому

    卧槽好厉害 点赞收藏加关注了谢谢

  • @stephenliao63
    @stephenliao63 Рік тому

    pandas
    matplotlib, seaborn
    pytorch/tensorflow
    斜線代表不一定要會後面的

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝回饋。套件不同職位需求可能不同

  • @queteeliew
    @queteeliew 10 місяців тому

    好的工作又不是很多
    行政院主計總處於日前111年的12月21日公布「110年(2021年)工業及服務業受僱員工全年總薪資中位數及分布統計結果」,其中勞工薪資平均數為67萬元、年薪中位數為50.6萬元,雖較109年增加1.00%,但高、低薪資差距仍自2015年首度擴大,且根據統計:高達68.31%的勞工未達平均年薪,寫下歷史新高的紀錄。

    • @BenHsu501
      @BenHsu501  10 місяців тому

      確實挺殘酷的,在台灣要過能養家的生活,估計薪資得到80-90%
      很多時候不是努力問題,而是賽道問題,所以轉職就成了更換賽道的一個選擇

  • @josephwu3172
    @josephwu3172 Рік тому

    簡潔又直接的影片,感謝Ben的分享!

  • @oscartim-v1e
    @oscartim-v1e 6 місяців тому

    你提到數據分析side project:花朵辨識這個層面,做數據分析要做到這麼複雜嗎?我以為做數據就是學python, excel,sql,tablue拿這些軟件做分析。我想我理解成data analyst 而你說的這個是data scientist。不知對不對

    • @BenHsu501
      @BenHsu501  5 місяців тому +1

      分析的目標就是可以讓公司在商業上得到利潤,可以做出一個專案描繪你在未來能幫公司從不同角度發想,也能呈現出你的基礎能力。只是基礎技術雖然重要,但很不容易在履歷脫穎而出。至於DA跟DS的差異,兩者在職務名稱上差距越來越小,但即使有差異,也是某個直接的決策,如分析產品應該用A行銷手法,或是B,這種直面決策的分析;或是輔助的自動化,像是判斷一個人是否容易在信用卡違約。

  • @yuxinyang2608
    @yuxinyang2608 Рік тому +1

    非常期待能够专门出一期关于项目组那么做履历怎么写的视频,我作为一个数据分析 Master刚毕业的学生因为自己没有什么实习/工作经验,真的找了很多人改简历但效果都没有很好,这种情况怎么办呀

    • @BenHsu501
      @BenHsu501  Рік тому +1

      影片主要還是針對轉職者。如果已經修改到極致都沒辦法,可能是受景氣影響,就先將目標公司的要求降低,累積工作經驗,等之後跳槽;或是弄一個好一些的side project。

  • @盧小平-y9s
    @盧小平-y9s Рік тому

    請問可以講一下Java工程師的轉職嗎?

    • @BenHsu501
      @BenHsu501  Рік тому +1

      轉職的觀念應該都是差不多的,差異在於要如何做有價值的side project。對於轉職者來說,盡量做可以應用在生活上的、有實際作用的,實際上可以去找線上課程,然後那種線上課程就是帶你做出一個應用,接著你沿著這個應用加強就行了。

  • @Ahwu_AIClass
    @Ahwu_AIClass Рік тому

    分析的很有道理。

  • @janziyi5507
    @janziyi5507 Рік тому

    非常有用!!

  • @zac1427
    @zac1427 Рік тому

    谢谢分享!可是Kaggle上面如何找到体量够大的商业数据集做项目?好项目不会挑,能教教么

    • @BenHsu501
      @BenHsu501  Рік тому

      這算是大哉問,比較難回答。
      如果完全沒有方向,建議先google你的目標領域可以做怎樣的題目,這時候可能就會有人整理一些數據集供使用。基本的東西也是有用的。

  • @許朝冠-m2t
    @許朝冠-m2t Рік тому

    那針對創業相關建議呢
    謝謝

    • @BenHsu501
      @BenHsu501  Рік тому

      本身沒有做過全面性的創業訪談,但可以填寫問卷說明你的問題,我可以提供我的看法。

  • @睿-q7f
    @睿-q7f 9 місяців тому

    請問一下 那如果把這些觀念做法 放在面試前端也是可以的嗎?

    • @BenHsu501
      @BenHsu501  9 місяців тому

      基本上是可以的,面試可以打配另一篇履歷撰寫來看

  • @就已
    @就已 Рік тому

    感謝分享🎉

  • @cataviva
    @cataviva Рік тому

    突然跳出你的影片, 講的很好~👍🏻 準備轉職中,開始加強machine learning

  • @support1Q84
    @support1Q84 Рік тому +1

    Super helpful!
    Thanks a lot for sharing~~

  • @KoYuChiang
    @KoYuChiang Рік тому +1

    請問履歷上的那些project應該要做到什麼程度和表現形式才比較適合放在履歷上呢?

    • @BenHsu501
      @BenHsu501  Рік тому +4

      最初一步,就算是練習的也放上去,因為比起你放你做櫃台、餐飲,放練習的也是有幫助的

  • @joeyyeh4690
    @joeyyeh4690 Рік тому

    功德無量🙏

  • @siberia
    @siberia 6 місяців тому

    請問數據分析適合當作外包接案在家工作的項目嗎?是否也適合此規劃流程?本人為科技業作業員小白😂

    • @BenHsu501
      @BenHsu501  6 місяців тому +1

      基本上是可以的,不過需要先考慮哪些項目會被外包,通常有濃厚產業知識的工作,會傾向由內部人員處理,而外包人員處理更技術的工作。
      所以相較於偏向產業的數據分析,軟體開發會有更多外包的機會。或者是說,數據分析的外包,通常更五花八門,需要了解的知識雨技能更廣闊。

  • @Ayu11.27
    @Ayu11.27 Рік тому

    想請問英文不好的人應該要怎麼開始學習呢
    另外本身的目標是希望能有個科技相關產業 先入門
    不一定要跟轉職數據分析有關 但希望能夠使用到python做一些自動化測試操作等等的
    如果是這樣的需求 除了學好Python的基礎之外還需要具備什麼呢

    • @BenHsu501
      @BenHsu501  Рік тому +1

      英文不好還是一樣去找的課程,YT、Udemy上面也挺多中文的課程。學習內容,基本上你學習python、SQL大致就可以了,然後準備好履歷,接著海投。

    • @emsw4266
      @emsw4266 Рік тому +1

      英文是加分打底項,可以之後慢慢練,先看得懂程式語言上的英語部分就好

  • @icej4040
    @icej4040 Рік тому +2

    對於想轉職而進台大再修一個資科碩的我,我真的覺得很邪門歪道,這樣的程度進的了怎樣的公司....

    • @BenHsu501
      @BenHsu501  Рік тому +1

      感謝回饋。能進怎樣的公司可能不是重點了,有工作經驗後的跳槽才是。也可以關注下一部影片,對你應該也有幫助。

  • @biggary6427
    @biggary6427 Рік тому

    蠻實際的

  • @liubianxing
    @liubianxing Рік тому

    thx for sharing and fabulous suggestion

  • @阿才-f1x
    @阿才-f1x Рік тому

    你得眼神真魔性
    我想請問發布影片
    是你做的數據分析project之一嗎XD

    • @BenHsu501
      @BenHsu501  Рік тому

      發佈影片是整個 Side project 的一環沒錯 XD,只是這個 Projct 比較大型,所以會設法在某些階段與工作規畫結合,讓他不是兩件不同的事情,而是一件大事情

  • @mchotdograp
    @mchotdograp Рік тому

    你好Ben!40+的男性想去加拿大留学念data analyst转职+移民可行吗?之前在企业做会计结算,自学的Excel和Python

    • @BenHsu501
      @BenHsu501  Рік тому +1

      沒有特別研究過加拿大移民,並且提供訊息太少。如果你是指留學取得工作簽,以你的狀況是否能取得工作,首先還是要了解加拿大的求職文化,像是美國碩士通常會在今年找明年實習,如果狀況雷同,就變成留學前就要開始準備面試。另一方面,如果你畢業時如同今年初科技業裁員,這種情況下只能回國。
      當然這也跟你未來的求職目標、學校、現在的學習程度、自學的能力、還有為什麼要選這條路有關,所以很難以可行或不可行回答。
      如果目標是移民,那也不一定要數據分析;如果是臨時起意,就需要多思量一下。

  • @WeiZhengChoo
    @WeiZhengChoo 10 місяців тому

    感觉博主举的例子都是机器学习,数据分析应该都是学excel, sql,power bi 这些吧?

    • @BenHsu501
      @BenHsu501  9 місяців тому

      有蠻多考慮面向,像是,如果你的目標工作只要 excel, sql, power bi 該如何脫穎而出;還有,市場上的數據分析師,有多少比例需要 python。通常 python 的市場需求在數據分析,還是最大的,即使工作不一定用得上,面試也加分。

  • @happyseal6058
    @happyseal6058 Рік тому

    请问你有相关的数据资料证明你的论点吗

    • @BenHsu501
      @BenHsu501  Рік тому

      有些是訪談經驗,有些是同儕經驗,但不同地區狀況可能不同。

  • @yulongwang2856
    @yulongwang2856 Рік тому

    感谢分享🙏

  • @hsiajui-kai1580
    @hsiajui-kai1580 Рік тому

    感謝

  • @ams3616
    @ams3616 Рік тому

    我第一步對了,正在學習python😊

  • @張李-m6v
    @張李-m6v 9 місяців тому

    我會寫程式,技術沒問題,但是最有問題的是該如何挖掘有價值的數據就是了,目前的資料都是取自政府的公開資料集。

    • @BenHsu501
      @BenHsu501  8 місяців тому +1

      要從一個不了解的數據自行挖掘出價值是困難的,有時候也是莫名奇妙,舉例來說,鐵達尼號數據集可以挖出什麼商業價值?所以從需求開始找資料,會比從資料找應用要來得容易。

  • @chih-linglee1731
    @chih-linglee1731 Рік тому

    感謝分享~想請問一定要照著第一步第二步去試著學習嗎?可以從第二步開始嗎😅有點想先瞭解數據分析

    • @BenHsu501
      @BenHsu501  Рік тому

      可以,這部影片講的事情是"如何規劃學習",但前面有一個階段是"評估轉職職位"(第二部影片),以及 "目標制訂與產業選擇" (第N部影片)。
      所以你應該先知道自己想做數據分析、UI/UX、前後端、遊戲開發或其他職業。而你寫了解數據分析是什麼就是這一步

  • @Sinhaimin95
    @Sinhaimin95 6 місяців тому

    请问33岁才学数据分析,会不会太迟?

    • @BenHsu501
      @BenHsu501  6 місяців тому +1

      看你的目的是什麼,如果目的是興趣、自我實現,或是想接觸一個新的領域,幾歲學習都沒有關係。如果是想要提升薪水,則要先考慮你現在的薪水有多少,因為踏入新的領域,薪資一開始可能不如預期,需要時間成長,縱使前瞻性更好,但如果要花5年才能到你現在的薪水,不一定值得。

    • @Sinhaimin95
      @Sinhaimin95 6 місяців тому

      @@BenHsu501 目的是学一门技术,当作后备,万一现在的工作丢了,至少还有一些技术去找工作。

    • @BenHsu501
      @BenHsu501  6 місяців тому +2

      @@Sinhaimin95 如果你原本是PM,那下一份最可能找到的工作也是PM。軟體技術性工作的問題在不斷疊新,現在學的1-2年後就不靠譜了,所以是如果是找一個後備工作,可能5年、10年後才會用到的話,這時培養軟技能反而更通用。

    • @Sinhaimin95
      @Sinhaimin95 6 місяців тому

      @@BenHsu501 学爽,有没有相关工作都不重要。我去报读政府提供的data analysis课程一年,之后会有相关文凭,有读好过没有读,没人会知道未来是怎样。

  • @dellastone8741
    @dellastone8741 Рік тому +1

    乾貨乾貨🎉!謝謝你解惑。很想諮詢相關領域的人,請問可以報名嗎?

    • @BenHsu501
      @BenHsu501  Рік тому +2

      下面資訊欄有問卷,可以說下你的問題

    • @dellastone8741
      @dellastone8741 Рік тому

      @@BenHsu501 已填問卷,謝謝回覆。

  • @tingtingyang4958
    @tingtingyang4958 Рік тому +1

    謝謝Ben明快清晰的分析 收穫良多 已訂閱❤
    想請問Ben轉職成功與否會跟年紀有關嗎
    我是一位商科背景想轉職到UIUX的36歲路人 感覺這個年紀都快比面試管大了啊😅

    • @BenHsu501
      @BenHsu501  Рік тому

      UI/UX 的領域我不熟悉,但通常是有影響的,並且 UI/UX 的職缺量較少,要多加考量

    • @tingtingyang4958
      @tingtingyang4958 Рік тому

      @@BenHsu501 謝謝Ben 我有同感 我的觀察是台灣的產業發展不均 想要搶到明星職缺 真的對年紀漸長的人不太友善啊 啊嗚

    • @emsw4266
      @emsw4266 Рік тому +1

      @@tingtingyang4958 我聽到很多是沒有設計科的背景,HR直接刷掉😢

    • @tingtingyang4958
      @tingtingyang4958 Рік тому

      ​@@emsw4266謝謝你的分享 其實我也發現以台灣的產業來說 擔任UIUX 並不吃香也無法獲得高薪 也許無法轉職到UIUX 是老天對我的一種祝福吧😂

  • @Jeff-pf8cm
    @Jeff-pf8cm Рік тому

    謝謝 給了我方向執行

  • @pow975
    @pow975 Рік тому +1

    影片聲音有點小耶,希望可以大聲一點

    • @BenHsu501
      @BenHsu501  Рік тому +1

      感謝回饋,之後會再注意

  • @ccuuttww
    @ccuuttww 10 місяців тому

    數學根基好其實轉職機會會大一點 例如你可以講出SVM 算法是什樣做 RANDOM FOREST 中什麼是BAGGING 等等
    即使你作品不太行機會還是比別人大一點 因為你數學和概念方邊不會真是沒有救 你如果只是解釋PROJECT方邊不行問題不大反正
    一個PROJECT 是一隊人做 另外學好數學你可以從其他供論文得益加快算法/準確度 加上新方法是每天都會出來
    即使你面試真的過了到時根不上時代節奏一樣是淘汰
    你以為讀1至2年數學不行就可以轉職?太天真了吧

    • @BenHsu501
      @BenHsu501  9 місяців тому

      你說明的也是對的,面試有準備理論知識是好的。但是數學好與會數據應用不一定是同一件事情,很多時候,公司是要可以即時解決問題的人,倒是剛畢業的學生,理論都挺扎實,但就缺了些實作,公司招進去就是長期培養的。

  • @Hugo_Musk
    @Hugo_Musk Рік тому

    感謝 我愛你

  • @technologygoldenretriever8933

    好影片推推,看到太多想轉職的都來亂的

  • @平民老百姓-x1g
    @平民老百姓-x1g Рік тому

    在還沒有取得工作前應該專注的是取得工作,而不是能夠在那行業做得多好,大概是這樣

    • @BenHsu501
      @BenHsu501  Рік тому

      確實是這樣,只是大部分人不知道如何分辨哪些可以幫助取得工作,知易行難這樣

  • @zac1427
    @zac1427 Рік тому +1

    转了一年多了,还没转成功。从建筑管理行业转 data analyst ,谢谢Ben的影片!

    • @BenHsu501
      @BenHsu501  Рік тому

      感謝回饋,不過建議填寫資訊欄問卷,說明一下你的現狀,可能能更直面問題。

  • @無言卡卡鹿
    @無言卡卡鹿 Рік тому

    請問SQL的部分是必學的嗎,才能跟python搭配使用?

    • @BenHsu501
      @BenHsu501  Рік тому

      很多面試都會考SQL,所以建議是轉職過程需要學會,如果因為不會SQL被刷掉,很不划算。
      SQL不一定是與python搭配使用,SQL也可能獨立使用、或是與其他語言搭配,看公司、團隊的習慣。

  • @s7d9698
    @s7d9698 Рік тому

    謝謝大大,雖然不是想轉職數據分析,但其他領域也是殊途同歸,感謝解開盲點
    那如果跟這份工作無關的以前經驗,還需要放嗎?如果不放不會對面試官來說有gap year嗎?

    • @BenHsu501
      @BenHsu501  Рік тому +1

      我有朋友是中間跑去其他領域5年,這個就非放不可。如果有1、2、3不同工作,2是其他領域半年、一年經驗,可不放,這期間與待業時間差不多。

  • @MinaLiou
    @MinaLiou Рік тому

    請問 Ben 哥有臉書或部落格嗎?謝謝🙏❤

    • @BenHsu501
      @BenHsu501  Рік тому

      哈哈哈哈,Mina 發mail給我吧