Schriftliches Wurzelziehen | Math Intuition

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ • 48

  • @hectorpascale1013
    @hectorpascale1013 2 роки тому +1

    Gibt´s so einen Algorithmus auch für die Kubikwurzel und höher? Also keine Primfaktorzerlegung, wenn es "glatt" aufgeht.
    @15:18 hatte schon im Kommentar zu meckern begonnen, zum Glück hab ich das Video aber zu Ende geschaut ;)
    "... und beim nächstes mal zeige ich euch wie Ihr die 5te Wurzel im Hexadezimalsystem zieht" ;)))

    • @mathintuition
      @mathintuition  2 роки тому

      Ich kenn zumindest keinen Algorithmus für kubische wurzeln etc Aber vielleicht gibts ja was dazu, das ich nicht kenne :)

  • @artjomm.817
    @artjomm.817 3 роки тому

    Einer der besten Mathe-Channels auf UA-cam meiner Meinung nach.

    • @mathintuition
      @mathintuition  3 роки тому

      Danke für die Blumen! Noch geileres Zeug gibts übrigens auf math-intuition.de ;)

  • @martinwieczorek1703
    @martinwieczorek1703 2 роки тому

    Meine Güte, jetzt habe ich es kapiert. Vielen Dank für Ihre Mühe! Das war eine schwere Geburt. 😂

  • @ramamonkar169
    @ramamonkar169 4 роки тому +1

    Danke ! Endlich eine Gutes Video , danke wirklich gut erklärt . Ganz toll erklärt

  • @Myrkuls
    @Myrkuls 7 років тому +8

    Top Video, danke dafür! :D
    Kleiner Zusatz für die, denen Skizzen immer ein bisschen riskant sind:
    Den Abstand zweier Quadratzahlen kann man sich auch mit der ersten binomischen Formel herleiten.
    Denn es gilt "(k+1)²=k²+2*k+1" , was äquivalent ist zu "(k+1)² - k² = 2*k+1".

    • @g-man8885
      @g-man8885 3 роки тому +1

      Also die Skizze war eigentlich super, genauso die Erklärung! hab als Hauptschüler alles sofort verstanden. Für was benötigt man da eine binomische Formel? Die benötigt man doch nur wenn man eine Formel umstellen muss!
      Wenn ich (13+12)² habe nutze ich doch auch keine binomischen Formel. Außer man Rechnet gerne.

    • @karstenmeyer1729
      @karstenmeyer1729 Рік тому

      @@g-man8885
      Dennoch sind die Binomischen Formeln ganz nützlich für pythagoräische Zahlentripel und einige Quadratzahlen haben als Differenz wiederum eine Quadratzahl. So ist 16 + 9 = 25. Erste binomische Formel (4 + 2*4 + 1)^2 = 5^2. Man kann so alle pythagoräischen Tripel bekommen.
      Man muß nur rückwärts gehen und jede ungerade Quadratzahl in eine Zahl der Form Quadratzahl q = 2*(an)+a^2 umformen.
      49 = 2*24 + 1 -> 24^2 + 49 = 25^2
      81 = 2*40 + 1 -> 40^2 + 81 = 41^2

  • @mathaha2922
    @mathaha2922 9 років тому +2

    Danke für das Video. Toller Trick!

  • @hartwigLasser
    @hartwigLasser 9 років тому +2

    Tolle Erklärung!

  • @DJKLProductions
    @DJKLProductions 8 років тому +4

    Ich hatte das Glück, einen Mathelehrer gehabt zu haben, der uns das auch beibrachte. Nun bin ich ein paar Jahre raus aus der Schule und wollte nochmal auffrischen, da Mathe eines meiner Lieblingsfächer gewesen ist. Dein Video hat mich wieder auf Vordermann gebracht; Danke dafür!
    PS.: Welche Soft- bzw. Hardware benutzt du für deine Videos? Es sieht sehr nach einem Grafiktablet aus, mit dem du virtuell Zeichnest.

    • @mathintuition
      @mathintuition  8 років тому +1

      Danke für das coole Feedback! Ja, genau ich nutze ein Bamboo Tablet und Smoothdraw als Zeichentool.

  • @stefanpierick4146
    @stefanpierick4146 6 років тому +1

    Muss man bei der kubischen Wurzel Dreierblöcke setzen?

  • @Exsalve
    @Exsalve 9 років тому +2

    Super Video! Weiter so!

  • @g-man8885
    @g-man8885 4 роки тому

    das gibt ein Daumen hoch und ein Abo! super toll erklärt vielen Dank

  • @selfgod7999
    @selfgod7999 4 роки тому

    Super erklärt vielen Dank 🙏

  • @michaeldittmann9399
    @michaeldittmann9399 3 роки тому

    Funktioniert das auch mit kleinen Quadratzahlen (zB 841, 784, 729)?? Oder wäre das „Auswendiglernen“ nicht eher schneller?

    • @mathintuition
      @mathintuition  3 роки тому

      Probiers mal aus :) Ich hatte Quadratzahlen immer nur bis 400 im Kopf. Und der Algorithmus klappt übrigens auch mit Kommazahlen als Wurzel, ist also flexibler.

    • @michaeldittmann9399
      @michaeldittmann9399 3 роки тому

      @@mathintuition Irgendwie funktioniert es zB bei der Berechnung zB der Wurzel aus 841 schlecht bzw ist viel zu aufwändig:
      841 = 2
      1
      3
      ----
      441
      41
      43
      45
      47
      49
      50
      51
      53
      55
      ---
      Irgendwo muss ich da einen Fehler eingebaut haben….

    • @mathintuition
      @mathintuition  3 роки тому

      @@michaeldittmann9399 die 50 weglassen und dafür am ende eine 57, dann passt es. Aber ich verstehe deinen Punkt: Bei deiner aufgaben mit wurzel(841) kommt ja 29 raus und die 9 bedeutet, dass man lange schreiben und rechnen muss im 2. schritt. Weiß man ja aber vorher nicht :)

    • @michaeldittmann9399
      @michaeldittmann9399 3 роки тому

      @@mathintuition Ganz genau das war mein Problem!! Ich lerne mit meiner Tochter (5. Klasse Gymnasium) Mathematik, kenne die ganzen „Rechentricks“ leider nicht und überlege, ob und welche ich ihr erkläre. Dieser Rechentrick ist wirklich toll, allerdings für die höheren Quadratzahlen; die niedrigen muss sie dann - wie du auch - bis 20 oder 30 ohne Rechentrick lernen. Auch gut!! Ganz, ganz herzlichen Dank für deine Antworten, sie haben mir sehr geholfen!!

  • @Schurik2015
    @Schurik2015 9 років тому +4

    Der Algorithmus ist wirklich genial einfach. :-)

  • @cicerlymaggie6045
    @cicerlymaggie6045 4 роки тому

    Gut erklärt, aber bei meiner Zahl 1556 komme ich beim 2. Schritt auf 9 Zahlen, ich weiß aber nicht, wie ich die Reihe weiterführe, 656 ist der Rest, dann 61,63,65,67,69, und dann? 80,weil plus 11? Ich komm nicht weiter. Viele Grüße und danke.

  • @man100111
    @man100111 9 років тому +1

    Funktioniert das auch für höhere Würzeln?

    • @mathintuition
      @mathintuition  9 років тому

      +man100111 Auch wenn das schön wäre ... ne, leider klappt der Algorithmus nur für die Quadratwurzel :(

    • @man100111
      @man100111 9 років тому

      schade...

    • @thesearchy1048
      @thesearchy1048 8 років тому +1

      Ja tut er, das wird allerdings deutlich komplizierter.

  • @jaqenqt7146
    @jaqenqt7146 5 років тому

    Gutes Video da ich bald anfange zu studieren und ich keinen Taschenrechner mehr nutzen darf hat es mich dich etwas weiter gebracht. Mich würde interessieren wie mache ich es wenn ich z.b die Wurzel aus 0.3 ziehen möchte? Oder z.b. aus 20?

    • @mathintuition
      @mathintuition  5 років тому

      Wurzel aus 0,3 (und auch krumme Ergebnisse wie bei Wurzel aus 20) müsste genau so gehen. Stell dir dafür, die Zahl als 0,300000000 vor. Arbeite dich auch hier immer in Päckchen von zwei Ziffern vor, beginnend bei nach dem Bruchstrich. Probiers mal aus!

    • @jaqenqt7146
      @jaqenqt7146 5 років тому

      @@mathintuition alles klar ich probiere es mal aus danke :)

    • @jaqenqt7146
      @jaqenqt7146 5 років тому

      @@mathintuition das hat soweit geklappt nun bin ich auf ein anderes Problem gestoßen wenn ich z.b die Wurzel aus 5797326 ziehe komme ich nach der 79 auf einen Rest von 373 und komme aber mit der Verdoppelung vom Ergebnis auf 48 weißt du was ich meine? Es müsste eine 0 rauskommen aber wie gehe ich da genau vor? Hoffe hab's einigermaßen verständlich ausgedrückt 😅

    • @mathintuition
      @mathintuition  5 років тому

      @@jaqenqt7146 In diesem Fall kommt dann ein Komma "," ins Ergebnis und dafür darfst du dann immer zwei Nullen an deine Rechnung dranhängen. In deinem Fall also Komma hinzufügen und dann mit 7900 weitermachen statt 79.

  • @nicoledoll2772
    @nicoledoll2772 3 роки тому

    Also ich rechne das so: Ich denke, das Prinzip ist das selbe, aber ich meine, es geht so schneller.
    Hier ein Beispiel: Links wird subtrahiert wie bei der schriftlichen Division üblich, aber immer um zwei Dezimalstellen verschoben, weil das Quadrat einer Ziffer maximal zweistellig ist (9 * 9 = 81). Rechts wird das bisherige Ergebnis verdoppelt (Exponent = 2) und um die Ziffer ergänzt, mit der es dann für die Subtraktion links multipliziert wird.
    √3471 = 58,915
    25
    ---
    971 10|8 * 8
    864
    -----
    10700 116|9 * 9
    10521
    ---------
    17900 1178|1 * 1
    11781
    die Abschätzung für die letzte Stelle: 18 / 12 = 1,5.

  • @HerrProfDrGuenther
    @HerrProfDrGuenther 9 років тому

    Wow, echt coole Sache. gibt es sowas auch für Logarithmus?

    • @mathintuition
      @mathintuition  9 років тому

      +HerrProfDrGuenther Ich kenne nur die Potenzentwicklung des Logarithmus, die dir hier vll. helfen kann. Schau mal hier unter "Wichtige Taylorreihen": de.wikipedia.org/wiki/Taylorreihe

    • @HerrProfDrGuenther
      @HerrProfDrGuenther 9 років тому

      Math Intuition Vielen Dank, ich schau mal rein

    • @arithmomania6838
      @arithmomania6838 7 років тому

      lg(n±a)= lg(n)±0,0101*(43a/(n±a/2)) Funktioniert im Kopf auf 6 Nachkommastellen genau!

  • @novatex8635
    @novatex8635 5 років тому

    tolle erklährung. kannst du evtl. ein video erstellen, indem du erläuterst, wie man aus mehrgliedrigen radikanten die wurzel zieht wenn: der radikant aus summen und oder differenzen besteht, die man nicht in produkte zerlegen kann. in meinem buch ist das sowas von konfus beschrieben, da steigt kein mensch durch. :D

    • @mathintuition
      @mathintuition  5 років тому

      Du meinst, wie man Ausdrücke sqrt(a+b) berechnet? Da gibt es in der Analysis meist ein paar "Tricks", zum Beispiel einen Bruch daraus zu machen und die dritte binomische Formel zu nutzen sqrt(a+b)*sqrt(a-b)/sqrt(a-b). Such mal nach ähnlichen Aufgaben mit Lösung online, dann siehst du diese "Tricks". Ist schwer dazu ein konkretes Vorgehen abzuleiten.

    • @novatex8635
      @novatex8635 5 років тому

      sowas hab ich schon gesehen, aber es soll auch ein verfahren geben (ähnlich einer division von summen) wenn es nicht gelingt die summe/ differenz in ein produkt zu zerlegen. das würde ich gerne lernen. wie es in meinem buch beschrieben ist, wirkt es eher konfus.@@mathintuition

  • @karstenmeyer1729
    @karstenmeyer1729 Рік тому

    Das man aus der Summe der ersten ´'n' ungeraden Zahlen die 'n'te Quadratzahl bekommt wußten wir damals, in den 1970er Jahre, schon in der Grundschule!

  • @martinsenoner8186
    @martinsenoner8186 2 роки тому

    habe ihn in der Schule gelernt (in der neunten Klasse)

  • @FahimFarooqFoto
    @FahimFarooqFoto 9 років тому +3

    Geil, wusste nicht, dass es dazu einen Algorithmus gibt

  • @karstenmeyer1729
    @karstenmeyer1729 Рік тому

    Um den Beweis, das sich die Quadratzahlen aus der Summe der ungeraden Zahlen bildet zu beweisenm bedarf es nicht einmal der vollständigen Induktion,
    Der Beweis läßt sich grafisch führen. Wenn ich mit einem 1-Quadrat beginne und ich ein Feld der größe von 2*1+1 (3) um an das Quadrat bekommen, dann bekomme ich ein 2*2 Quadrat. Wenn ich dann ein 2*2+1 Feld an das Quadrat lege, bekomme ich ein 3*3 Quadrat. Es wir4d optisch offensichtlich, das man für ein n*n Quadrat plus 2*n+1 immer ein (n+1)*(n+1) Quadrat bekommt.
    Das ist so ähnlich wie mit den Dreieckszahlen (1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...): Die Summe zweier aufeinander folgender Dreieckszahlen ergibt immer eine Quadratzahl! Auch das läßt sich grafisch beweisen!

  • @emxl-ob9qo
    @emxl-ob9qo 3 роки тому

    G.O.A.T