Harvard University Admission Interview tricks | Can you solve this ?

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 13

  • @okaycook1307
    @okaycook1307 2 дні тому +1

    This is one of those problems where brute forcing starting with 1 and increasing is faster than the intended method to be used

    • @superacademy247
      @superacademy247  2 дні тому

      I appreciate your feedback! Thanks for sharing your perspective. 🙏💕🥰✅

  • @andyiswonderful
    @andyiswonderful 3 дні тому +2

    I just looked at the problem for about 10 seconds and knew the answer was 2,3.

  • @ChavoMysterio
    @ChavoMysterio 3 дні тому +1

    x⁶+y⁶=793
    x³+y³=35
    (x³)²+(y³)²=793
    x³+y³=35
    Let a=x³ and b=y³
    a²+b²=793
    a+b=35 -----> b=35-a
    a²+(35-a)²=793
    a²+a²-70a+1225=793
    2a²-70a+432=0
    a²-35a+216=0
    (a-8)(a-27)=0
    Case 1
    a-8=0
    a=8
    8+b=35
    b=27
    Case 2
    a-27=0
    a=27
    27+b=35
    b=8

    • @ChavoMysterio
      @ChavoMysterio 3 дні тому +1

      Case 1: (a, b)=(8, 27)
      Recall a=x³ and b=y³
      x³=8
      x³-8=0
      (x-2)(x²+2x+4)=0
      x²+2x+4=0
      x²+2x+1=-3
      (x+1)²=-3
      |x+1|=i√3
      x+1=±i√3
      x=-1±i√3 ❤❤
      x-2=0
      x=2 ❤
      y³=27
      y³-27=0
      (y-3)(y²+3y+9)=0
      y³+3y+9=0
      4y³+12y+36=0
      4y²+12y+9=-27
      (2y+3)²=-27
      |2y+3|=3i√3
      2y+3=±3i√3
      2y=-3±3i√3
      y=½(-3±3i√3) ❤❤
      y-3=0
      y=3 ❤

    • @ChavoMysterio
      @ChavoMysterio 3 дні тому +1

      Case 2: (x, y)=(27, 8)
      Recall a=x³ and b=y³
      x³=27
      x³-27=0
      (x-3)(x²+3x+9)=0
      x²+3x+9=0
      4x²+12x+36=0
      4x²+12x+9=-27
      (2x+3)²=-27
      |2x+3|=3i√3
      2x+3=±3i√3
      2x=-3±3i√3
      x=½(-3±3i√3) ❤❤
      x-3=0
      x=3 ❤
      y³=8
      y³-8=0
      (y-2)(y²+2y+4)=0
      y²+2y+4=0
      y²+2y+1=-3
      (y+1)²=-3
      |y+1|=i√3
      y+1=±i√3
      y=-1±i√3 ❤❤
      y-2=0
      y=2 ❤

  • @key_board_x
    @key_board_x 3 дні тому +1

    x³ + y³ = 35 → let: a = x³ and let: b = y³
    a + b = 35
    x⁶ + y⁶ = 793 → recall: and recall: b = y³
    a² + b² = 793
    (a + b)² = a² + 2ab + b² → recall: a² + b² = 793
    (a + b)² = 2ab + 793 → recall: a + b = 35
    35² = 2ab + 793
    2ab = 35² - 793
    2ab = 432
    ab = a = x³ 216 → recall: a + b = 35 → b = 35 - a
    a.(35 - a) = 216
    35a - a² = 216
    a² - 35a + 216 = 0
    Δ = (- 35)² - (4 * 216) = 19²
    a = (35 ± 19)/2
    First case: a = (35 + 19)/2
    a = 27 → recall: b = 35 - a
    b = 8
    Recall: a = x³ → x³ = 27 → x = 3
    Recall: b = y³ → y³ = 8 → y = 2
    Second case: a = (35 - 19)/2
    a = 8 → recall: b = 35 - a
    b = 27
    Recall: a = x³ → x³ = 8 → x = 2
    Recall: b = y³ → y³ = 27→ y = 3
    Solution (x ; y)
    (3 ; 2)
    (2 ; 3)

    • @superacademy247
      @superacademy247  3 дні тому

      Thanks for showing your approach ✅💖🙏💕

  • @davidellis1929
    @davidellis1929 3 дні тому +1

    Here's a much easier solution. Let m and n be x^3 and y^3. Since m+n=35, we have (m+n)^2=m^2+2mn+n^2=1225. Subtracting m^2+n^2=793, we get 2mn=1225-793=432, so mn=216. Then m and n are the roots of the quadratic equation m^2-35m+216=0, which factors as (m-27)(m-8)=0, whose roots are 27 and 8. Finally, x and y are the cube roots of m and n, for which the real values for x and y are 2 and 3 (either order). There are also complex cube roots.

    • @Pinoy342
      @Pinoy342 3 дні тому

      thanks dude. but didn't understood the part from where quadratic equation was formed and also m had values of 27,8 so how you directly put it as equivalent to y , since you haven't calculated value of n
      and yes I'm bad in maths

    • @davidellis1929
      @davidellis1929 2 дні тому

      In a quadratic equation x^2+bx+c=0, the sum of the two roots is -b and their product is c.

    • @Pinoy342
      @Pinoy342 2 дні тому

      @@davidellis1929 thanks mate