IIT-JEE Professors make problems from this book

Поділитися
Вставка
  • Опубліковано 5 лют 2025
  • 🔸To join our {SO60} course for JEE Advance strengthening, revision,
    and concept coverage altogether, go here - courses.jeesim...
    🔹Join the Telegram community
    t.me/s/jeesimp...
    PS: This problem is derived from Introduction to Electrodynamics by David G Griffiths, a renowned book on Classical Electrodynamics, which is considered one of the most challenging texts in the field. Many IIT professors also use this book, to create questions for electrostatics.
    Similar Video:
    • Solving Jackson's Elec...
    • Solving Advance Electr...

КОМЕНТАРІ • 39

  • @jeesimplified-subject
    @jeesimplified-subject  8 днів тому +7

    🔸To join our {SO60} course for JEE Advance strengthening, revision,
    and concept coverage altogether, go here - courses.jeesimplified.com/courses

  • @fretting3264
    @fretting3264 8 днів тому +13

    it can also be seen in as when we take the charge from the cavity to infinity the only field lines that do get changed are the ones that were produced in the spherical region extending from r=a to r=b ( initially there were no field lines in this region but when the charge is taken to infinity they appear ). So, the change in energy of configuration is due to those field lines and it's field energy can be obtained by integrating 1/2(epsilon not)(E)^2 × elemental volume with limits from r = a to r = b.

  • @abcd-e8k2s
    @abcd-e8k2s 8 днів тому +9

    My approach
    W ext= diff in total energies
    Initially total energy is integral 1/2(epsilon not)(E)^2 × elemental small volume limits of integral is a to b
    And it is the ext work since finally it is at infinity so no energy

  • @darklord2096
    @darklord2096 8 днів тому +5

    we can do it by capacitor concept take first energy that and find dinal energy that is zero so initial is KQ^2[1/a-1/b]/2 so lost energy is potential change (formula used q^2/2C and c is 4pi epsilon not (a-b)/ab

  • @navisleegaming7453
    @navisleegaming7453 8 днів тому +39

    galti se upload krdi kya

  • @kaushalgupta5209
    @kaushalgupta5209 8 днів тому +2

    Loved your circle wala vid that you solved using cosec rule. Great content.

  • @shedininjapsi
    @shedininjapsi 7 днів тому +2

    Ef=0 and Ei= P.E (Between -q and +q i.e -kqq/r2) + self enregy of -q + self enegry of +q (radius b wala) but no interaction energy for radius b wala as it will become zero

  • @L_Ratio_01
    @L_Ratio_01 8 днів тому +2

    I used
    U(final)-U(initial) = 0 - U(initial)
    U = sum of interaction energies (used similar logic like this video for this, i.e bringing small charge from infinity to surface) + sum of self potential energies (use formula for the 2 shells)

  • @themightye4833
    @themightye4833 8 днів тому +3

    Maine just PG se electrostatics revision karke break lene ke liye yt aya toh yeh vid dekha. lmfao imagine my surprise to see the last example of pg that i solved just before taking the break to be the very problem of the video lol

    • @ketan8943
      @ketan8943 4 дні тому +1

      I also revised it from PG advanced illustrations and saw it here

  • @Omprasadmunde
    @Omprasadmunde 8 днів тому +4

    Mene toh community post me hi answer bata diya tha 😊

  • @AtharwaKumar
    @AtharwaKumar 7 днів тому +5

    Ab pata chala mere Phy waale sir ke notes ke ques kaha se belong karte hai💀

  • @samratdixit8048
    @samratdixit8048 8 днів тому

    My approach : clearly net work is equal to change in potential energy
    So we basically have to find potential energy of a charged double spherical capacitor and I knew the formula of its capacitance i.e. c= 4 pi e0 K ab / b-a
    Then I used potential energy = q^2 /2c
    Took me less than 2 minutes ❤

  • @shivx3295
    @shivx3295 8 днів тому +1

    just wrote final and initial energy done under 1 minute

  • @Omprasadmunde
    @Omprasadmunde 8 днів тому +4

    MY CRAZY APPROACH ( without integration)
    Key concept :- WD = ∆U =(∆self PE + ∆Interaction PE) .
    Generally we consider only ∆self PE =0 , But here as charge is taken out of the cavity inside , Charges that were induced on conductor are vanished . Therefore we see change in self PE of two conducting shells .
    To write self PE , u can write it by Q^2 / 2C . Considering both shells as capacitor here C= 4(pi)(ephsalen not) ab/(b-a) .
    And interaction PE as usual .
    The answer comes out to be (KQ^2 )(1/a-1/b) /2 .

    • @Singularityfn
      @Singularityfn 8 днів тому

      Self energy of shell directly KQ²/2R laga dona aur sign dhang se balance

    • @Omprasadmunde
      @Omprasadmunde 7 днів тому +1

      @singularityfn no way , it can get to answer coz it's q^2 there's no sign change for inner or outer shell therefore it can never lead to the answer .

    • @Singularityfn
      @Singularityfn 7 днів тому

      @@Omprasadmunde going by the derivation we would already have -sign outside for self energy due to -q charge as the formula given by me above is for positive charge

    • @Omprasadmunde
      @Omprasadmunde 7 днів тому

      @@Singularityfn might be , but instead of derivating all that y not do it through capacitors POV

  • @Pulkit-tx6ih
    @Pulkit-tx6ih 8 днів тому +1

    Bro this can be directly done by self energy, acutally this was tge whole concept this I guess। Correct me if I am wrong।

  • @SanayM-ro1ci
    @SanayM-ro1ci 8 днів тому +3

    Bhaiya for maths ke liye professor kya book use karte woh batao please

    • @Dhaneesh_7
      @Dhaneesh_7 8 днів тому

      MATHS D GRIFFITH 😂

    • @rajat23ranjan
      @rajat23ranjan 6 днів тому +1

      @Dhaneesh iske coaching ke master ne ek book bol diya hoga ..😂😂😂 muh se nikal gaya hoga master ka usiko pure jee calender me yaad rakha hai banda..
      d griffith konsa book hai pehle search krlo
      aur coaching ke module kro pehle 😂😂😂😂😂 @Deveshh kya jo v

  • @onlybooks-zu9cv
    @onlybooks-zu9cv 7 днів тому

    Isme
    W=P.Ei-PEf
    Laga denge na
    Final zero initial inner surface aur outer surface pe induced charge -q,+q ki wajah se
    Ye sahi hai kya

  • @techbrosharma9243
    @techbrosharma9243 8 днів тому +2

    bro ye same question ashish arora sir ne apne ek video me karwa rakha h 2 saal pehle

    • @mahimagupta6378
      @mahimagupta6378 День тому

      Bro any specific series in which Ashish sir taught ??

  • @kushal327
    @kushal327 8 днів тому +4

    Bro stop using this ai voice

  • @Dhaneesh_7
    @Dhaneesh_7 8 днів тому +2

    Starting 😂😂😂

  • @rawatutkarsh
    @rawatutkarsh 8 днів тому

    Bhai ye question to irodov me bhi hai na ?

  • @dikshasbotique6172
    @dikshasbotique6172 8 днів тому +1

    Kya bhari aawaz hai

  • @IITekSapna
    @IITekSapna 8 днів тому +2

    AI Voice 😂😂

  • @shauryasoni1589
    @shauryasoni1589 6 днів тому

    Ie irodov wala question 😅

  • @rudraksh_bhawsar
    @rudraksh_bhawsar 8 днів тому

    1000th view