10. AlexNet - CNN Explained and Implemented.

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 69

  • @setupyouryoutub
    @setupyouryoutub 4 роки тому +1

    Very simple way of explaining deep learning. Awesome playlist

    • @ShriramVasudevan
      @ShriramVasudevan  4 роки тому

      Thanks and glad u liked. Your comments keep me moving

  • @lakshmisreekanth9256
    @lakshmisreekanth9256 Місяць тому

    Best way you explained the concept .

  • @keerthanaag8561
    @keerthanaag8561 9 місяців тому

    does the table value change?? does the stride and image size from the alexnet architecture table in the video remain the same irrespective of the input image??

  • @nastaranmarzban1419
    @nastaranmarzban1419 3 роки тому +2

    Hi, thanks for your really nice explanation, would you please explain a bit more why do we have 96 filters ?

  • @subashsi9420
    @subashsi9420 2 роки тому +1

    Your, voice is similar to Ravi Ashwin. Great explanation

  • @dawit_haile
    @dawit_haile 4 роки тому +1

    it is a good explanation in a simple way. Thank you.

  • @munazzapedia
    @munazzapedia Рік тому

    can we change parameters like input size , layer , feature map , size , kernel size , stride , activation ? any of them changing any of them will change alexnet architecture ? is it necessary to use same parameters which described in video to use this architecture namesd as alexnet ? If i change parameters it will be also called as alexnet ?

    • @keerthanaag8561
      @keerthanaag8561 9 місяців тому

      lemme know if you have found the answer

  • @thepresistence5935
    @thepresistence5935 2 роки тому

    Hey Bro, you told transfer learning, where is the weights for this. I think we are using only architecture of the AlexNet, how to apply weights

  • @aritraroy4275
    @aritraroy4275 Рік тому

    You didn't use batchNormalization or according to paper Local response Normalization

  • @nevillechristopherraja3470
    @nevillechristopherraja3470 3 роки тому +2

    hello Shriram, you have explained very well.. I have a question, the conv layer 2 has a padding of 2 as per the architecture but I see you have mentioned the padding as 'valid' for this layer, could you kindly clarify this? am I missing something here?

  • @technologyhunter2460
    @technologyhunter2460 4 роки тому +3

    Nice effort, Appreciated!

  • @JuneLetsPlays
    @JuneLetsPlays 3 роки тому

    You talked about augmentation? I cant find this in the code...

  • @FahadKhan1
    @FahadKhan1 Рік тому

    Can you please provide example code?

  • @anitanbhatt
    @anitanbhatt 3 роки тому

    Nicely explain and very easy to understand

  • @amankushwaha8927
    @amankushwaha8927 3 роки тому

    Is it possible to build the entire model without using the library?

  • @sp3519
    @sp3519 4 роки тому

    You have made it very easy to understand

  • @ninadkulkarni9426
    @ninadkulkarni9426 4 роки тому +3

    Hello sir, it is very informative. I want to ask you is it possible for you to make a video for training Alexnet architecture with pre trained cifar 10 dataset with explaining on how to rescale the datasets from 32*32 to 227*227? This will be very much helpful

  • @suyogborkar6644
    @suyogborkar6644 Рік тому

    Great explanation sir!!

  • @afiatasnim8848
    @afiatasnim8848 10 місяців тому

    u can train this AlexNet in tensorflow. but tensorflow won't provide pretrained weights for AlexNet. only pytorch will provide that.

  • @ihebdhouibi5132
    @ihebdhouibi5132 4 роки тому +2

    can you please share the code of AlexNet, it would help alot

    • @ShriramVasudevan
      @ShriramVasudevan  4 роки тому +1

      I will upload in GIT tomorrow..username shriramkv

    • @ihebdhouibi5132
      @ihebdhouibi5132 4 роки тому

      @@ShriramVasudevan add the link to it in description please

  • @menakaraman3374
    @menakaraman3374 4 роки тому

    Thanks for the explanation in a simple way

  • @KARTHIK-mm5uz
    @KARTHIK-mm5uz 2 роки тому

    Sir, it is very informative. thank you very much.
    Sir at the second convolution layer it is said that the size is 27x27x256. But it will be 23x23x256 right. in the program output, it is correctly calculated but in all the slides available it is 27x27x256. There are corresponding changes in the following layers (ie. in the next layer it is 11x11 then 9x9 then 7x7 etc.

  • @parthdedhia4182
    @parthdedhia4182 4 роки тому

    Hey, thanks for the explanation.
    Regarding the input dimension of the AlexNet network, I tried implementing it in TensorFlow and only works if the size is 227 x 227. But Many of the literatures following them have made use of different dimensions. Like SPPNet paper says its 224 x 224 x 3, and R-CNN paper uses 227 x 227. Please can you explain me as to what should be believed.

    • @ShriramVasudevan
      @ShriramVasudevan  4 роки тому +1

      To my knowledge... it should work with any dimension. There is no hard rule about the dimensions bro.

    • @saikrishnadas666
      @saikrishnadas666 4 роки тому +1

      The larger the image dimension, the more time it's gonna take for training and inference!

  • @unggulprabowo1045
    @unggulprabowo1045 3 роки тому +1

    Nice tutorial and demo sir, I want to ask about layer output. In this video and architecture output layer using 1000 classes, If our have classes 4, do we have anything ouput layer change 4 classes ?.

    • @esraahamada4784
      @esraahamada4784 10 місяців тому

      did you know the answer because I have the same question ?

  • @profdurgahere9007
    @profdurgahere9007 4 роки тому

    This is one of the best.

  • @nsridevi8569
    @nsridevi8569 4 роки тому

    Very informative and useful sir.... very used for my research.... can you explain the drawbacks of these pretrained models.... like googlenet, inception, resnet

  • @syedaneeshamuskan4712
    @syedaneeshamuskan4712 Рік тому

    hello i need code

  • @zouhairinfo7497
    @zouhairinfo7497 3 роки тому

    can you please share the code

  • @muslumyildiz5694
    @muslumyildiz5694 Рік тому +1

    thanks

  • @sstech6695
    @sstech6695 4 роки тому

    Very nicely done

  • @saritagautam9328
    @saritagautam9328 4 роки тому

    please provide the code sir

  • @sstech6695
    @sstech6695 4 роки тому

    Very well done..

  • @djjohny19
    @djjohny19 2 роки тому

    Sir, thank you very much!

  • @rohitborra2507
    @rohitborra2507 4 роки тому

    this is the best I have found on internet but you would have implemented with some example

    • @ShriramVasudevan
      @ShriramVasudevan  4 роки тому

      I have done that. Video follows shortly brother.

    • @rajanrana4887
      @rajanrana4887 4 роки тому

      @@ShriramVasudevan Please upload it bro we are waiting...

  • @hasinamoideen584
    @hasinamoideen584 4 роки тому +1

    clearly explained !

  • @samsondawit
    @samsondawit Рік тому

    why 227x227? The paper itself says 224x224? could you please explain

  • @muhammadfaizan8839
    @muhammadfaizan8839 4 роки тому

    sir very nice explanation and as well slides. thanks sir. kindly can you share the slides?

  • @امنهطه-ع7ق
    @امنهطه-ع7ق 3 роки тому

    Please sir can you send me code

  • @sinzsma8841
    @sinzsma8841 4 роки тому

    Very nice sir...

  • @babj32
    @babj32 3 роки тому

    Thanks too much

  • @fathimaa3617
    @fathimaa3617 4 роки тому

    👍

  • @amrutsanjawadmath47
    @amrutsanjawadmath47 4 роки тому

    nice