331 - Fine-tune Segment Anything Model (SAM) using custom data

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 131

  • @djondle
    @djondle 11 місяців тому +2

    Thanks!

  • @yourgo8825
    @yourgo8825 5 місяців тому +9

    great video, Now we are waiting for SAM2 using custom data

  • @TashinAhmed-e7r
    @TashinAhmed-e7r Рік тому +1

    Awesome. Thanks for this detailed explanation. It helped me a lot as a starter practitioner of SAM.

  • @philipplagrange314
    @philipplagrange314 Рік тому +4

    Great video, thank you! It would be interesting to know how to relate SAM to other models for additional classification! Could you possibly make a video about it?

  • @perpython
    @perpython 10 місяців тому +8

    Thank you for the video, your videos are always helpful! I'm facing this error and can't find a solution. In block 16, when accessing 'train_dataset[0]', I encounter the error: 'ValueError: Unsupported number of image dimensions: 2'.
    Skipping the block doesn't help as the same error occurs during training. I've searched online but couldn't find anything useful.
    I'm using Google Colab and these library versions: transformers 4.39.0.dev0, torch 2.1.0+cu121, datasets 2.18.0.
    I would greatly appreciate it if you could help me solve this problem. Thanks in advance.

    • @adikrish6926
      @adikrish6926 10 місяців тому +3

      I'm having the same issue, how did you solve it?

    • @perpython
      @perpython 9 місяців тому +1

      @@adikrish6926 I haven't figured it out yet, have you?

    • @adikrish6926
      @adikrish6926 9 місяців тому +3

      Yes I figured it out. The solution was to simply convert the grayscale images to RGB images by reshaping their arrays. The masks still need to stay as grey scale though.

    • @AakashGoyal25
      @AakashGoyal25 8 місяців тому +5

      def __getitem__(self, idx):
      item = self.dataset[idx]
      image = item["image"]
      image = np.array(image)
      # Check if the image is grayscale and convert it to RGB
      if image.ndim == 2: # Image is grayscale
      image = np.expand_dims(image, axis=-1) # Expand dimensions to (H, W, 1)
      image = np.repeat(image, 3, axis=2) # Repeat the grayscale values across the new channel dimension
      ground_truth_mask = np.array(item["label"])
      # Get bounding box prompt
      prompt = get_bounding_box(ground_truth_mask)
      # Prepare image and prompt for the model
      inputs = self.processor(image, input_boxes=[[prompt]], return_tensors="pt")
      # Remove batch dimension which the processor adds by default
      inputs = {k: v.squeeze(0) for k, v in inputs.items()}
      # Add ground truth segmentation
      inputs["ground_truth_mask"] = ground_truth_mask
      return inputs
      Here is the code for it. This works for me. I hope it will work for you as well.

    • @898guitarist898
      @898guitarist898 5 місяців тому +1

      @@AakashGoyal25 It worked for me! Thank you so much!!

  • @hik381
    @hik381 Рік тому +15

    Great video. If we have multiple objects in an image that we want to fine tune, should we create one mask for each image with all objects masked and having like multiple bboxes , or a separate mask for each object in the same image?

    • @ultimaterocker4
      @ultimaterocker4 11 місяців тому +1

      Hi did you ever figure this one out?

    • @joachimheirbrant1559
      @joachimheirbrant1559 6 місяців тому +1

      I had the same problem, i solved this by pairing the image with the bounding box and then the mask corresponding to that bounding box as one training sample this way you can have the same image in different training samples but what differs is the bounding box and the ground truth mask. Hope it helps

  • @robosergTV
    @robosergTV 11 місяців тому +1

    this is gold, thanks

  • @NicolaRomano
    @NicolaRomano Рік тому +7

    Great video as always. I think the function to find bboxes might be improved to take care of the fact that you might have multiple objects in a patch (I guess you could do a simple watershed and then find min and max for each instance). Also I'm wondering if you could improve results by adding some heuristics to how you choose your grid points, for instance concentrating points in darker areas in this case?

  • @tasnimjahan-qv7hy
    @tasnimjahan-qv7hy 4 місяці тому

    Thanks for such an elaborate explanation, learned a lot 🙏

  • @kevian182
    @kevian182 Рік тому

    Excellent tutorial Sreeni!!! 👏👏Thank you so much!!!

  • @charfi07
    @charfi07 6 місяців тому

    Thank you very much for this amazing tutorial

  • @mahmoudma3n935
    @mahmoudma3n935 Рік тому +2

    Could you make a video on how to use the SAM image encoder only as a feature extractor and then use any other decoder to get the prediction mask?

  • @dmitryutkin9864
    @dmitryutkin9864 Рік тому

    Thank you very much for such a wonderful tutorial!!!

  • @md.shafiqulislam5692
    @md.shafiqulislam5692 Рік тому +2

    Great Tutorial. can you share your notebook?

    • @DigitalSreeni
      @DigitalSreeni  Рік тому +2

      github.com/bnsreenu/python_for_microscopists/blob/master/331_fine_tune_SAM_mito.ipynb

  • @ericbader7998
    @ericbader7998 Рік тому

    Thanks for sharing the video!
    At 1:44, you mention SAM is designed to take text prompt describing what should be segmented.
    I am not sure that is the case, can you explain how?

    • @kanishkbashyam5293
      @kanishkbashyam5293 Рік тому

      Its called langsam. You can find it by search for segment-geospatial.
      I think it works by using a combination of object-detection and segmentation. The object detection is done with Grounding Dino, which return a bunch of bounding boxes. The object inside these bounding boxes are then segmented using SAM.

  • @gytisbernotas1610
    @gytisbernotas1610 Рік тому +2

    Hi! This was great - thank you very much for the tutorial! I was also trying to extend your work and work with the RGB rather than single-channel ones. I adjusted the code to deal with the RG images; however, I don't think I have it right for the loss calculations since I am getting a huuuge negative loss value. I was wondering if you have attempted to work with the RGB images as well?

    • @هادیشوکتی-ث5و
      @هادیشوکتی-ث5و Рік тому +1

      Hello. I also need to work with RGB data. Could you please your modified code with me?

    • @supriyoghosh2003
      @supriyoghosh2003 11 місяців тому

      Is there any progress on it?

    • @FelixWei-rn4bt
      @FelixWei-rn4bt 7 місяців тому

      Have you already figured out why the loss function has such a high negative value? I have the same problem

  • @AhmadGholizadeh-x8k
    @AhmadGholizadeh-x8k Рік тому

    Really great video. Thank you so much.

  • @BuseYaren
    @BuseYaren 10 місяців тому

    Thanks a lot for the informative video! Do you have any videos applying MedSAM3D?

  • @urzdvd
    @urzdvd Рік тому +1

    Great tutorial as always Sreeni, thank you, There is a project called medical SAM, that is already custom training with thousands of medical images, to check it out. In social media you have mentioned a tutorial to pass from binary image to polygon masks. Is there any resource that I can base myself on to do this process?

    • @DigitalSreeni
      @DigitalSreeni  Рік тому +4

      Converting annotations will be my focus for the next video - hoping to release it on Sep 20th. I need to collect my code from different projects and put it together into a single video tutorial. Please stay tuned :)

    • @urzdvd
      @urzdvd Рік тому +1

      @@DigitalSreeni thank you Sreeni, I'll stay tuned.

  • @surajprasad8741
    @surajprasad8741 7 місяців тому

    Thank you sir, got clear understanding

  • @johanhaggle7949
    @johanhaggle7949 Рік тому +2

    How can you know if you overtrain?

  • @AnusuyaT-gz5zc
    @AnusuyaT-gz5zc Рік тому +1

    Your videos are so good.. please post a video on deep image prior..
    Thanks

  • @puranjitsingh1782
    @puranjitsingh1782 3 місяці тому

    Can i train a multi class semantic segmentation SAM model on my custom dataset?

  • @gabrielgcarvalho
    @gabrielgcarvalho Рік тому +1

    Great video, and great instructor. However...
    This get_bounding_box is not very good for multiple objects. Furthermore, I could not make it work for more than one bounding box as a prompt. Do you have an idea how to generalize it?

  • @Azerty-v8z
    @Azerty-v8z 8 місяців тому

    Thanks for this amazing share.
    Is there any possibility SAM output the label associated with predicted mask in order to know the name of the instance segmented using SAM please?
    Thanks in advance

  • @llz-gp1db
    @llz-gp1db 7 місяців тому

    Nice video. Thanks for sharing!!!

  • @mmd_punisher
    @mmd_punisher 9 місяців тому +5

    Hey man, nice job, u e amazing like a what. I have got a problem in 26:00 min in video, in that 'example' i have an error that says, if anyone can help me, i really appreciate that. this is the last part of ERROR:
    ...raise ValueError(f"Unsupported number of image dimensions: {image.ndim}")
    ValueError: Unsupported number of image dimensions: 2

    • @lee-ちゃん
      @lee-ちゃん 8 місяців тому +2

      i have the same problem... i wish he did this on spyder ide so we could see the variable explorer. i need to see the dimensions of the input images and masks (hope he can give an answer soon)

    • @mmd_punisher
      @mmd_punisher 8 місяців тому +1

      @@lee-ちゃん The data that returns, is a dic that has 2 keys. also we can use '.dataset' whit that, but i don't really know what i gonna do, also in 2 or 3 lines later, we have this bunch of the code : "batch = next(iter(train_dataloader))" also with same error. hope someone help...

    • @Theredeemer-wc6ly
      @Theredeemer-wc6ly 8 місяців тому +1

      got the same error

    • @mmd_punisher
      @mmd_punisher 8 місяців тому

      @@Theredeemer-wc6ly Uh mate

    • @Theredeemer-wc6ly
      @Theredeemer-wc6ly 8 місяців тому

      @@mmd_punisher there was a fix a few comments ahead

  • @macarronewitchis
    @macarronewitchis 5 місяців тому +1

    Thanks for the video! I am getting the error "ValueError: Unsupported number of image dimensions: 2" in the SAMDataset, and I am strugling to fix it. Anyone with similar error?

    • @DigitalSreeni
      @DigitalSreeni  5 місяців тому +1

      I guess you are working a gray image and SAM expects a color image with 3 channels. If this is the case, you can copy your array twice to create an array with shape (x, y, 3) instead of just (x,y).

    • @macarronewitchis
      @macarronewitchis 5 місяців тому

      @@DigitalSreeni That was exactly the problem, thank you!

  • @SultanAhmad-g4d
    @SultanAhmad-g4d 3 місяці тому

    thanks for the great video
    can you please tell me how to i add classes name in prdicted segmentation

  • @I_A_D_L
    @I_A_D_L 11 місяців тому

    how to measure the masks created from the SAM model? Thank you very much!.

  • @youmustbenewhereguy
    @youmustbenewhereguy Рік тому +1

    How to finetune a multiclass segmentation label? How to make the prompt based on the label too?

    • @muhammad_talha
      @muhammad_talha 6 місяців тому

      have you find anything related to it?

  • @johanhaggle7949
    @johanhaggle7949 Рік тому +4

    When changing patch_size from 256 to 512 and step size from 256 to 512 I get this error:
    "Error: AssertionError: ground truth has different shape (torch.Size([2, 1, 512, 512])) from input (torch.Size([2, 1, 256, 256]))"
    Why is this?

    • @carlosjarrin3170
      @carlosjarrin3170 10 місяців тому

      There is a part in the image processor class of the 'from transformers import SamProcessor' where it calls a function, and it is stated that the default maximum patch size is 256x256. It took a couple of hours to realize, and I hope it will help somebody. I encourage everyone who wants to understand the code to check the code libraries

    • @FelixWei-rn4bt
      @FelixWei-rn4bt 8 місяців тому

      @@carlosjarrin3170 is there any chance to use a bigger patch size or is fine- tuning SAM only possible with 256x256? Maybe by using another image processor?

    • @Fourest-ys1wi
      @Fourest-ys1wi 7 місяців тому

      @@FelixWei-rn4bt I tried to scale the predicted_masks. And it worked for me. Try this:
      predicted_masks = outputs.pred_masks.squeeze(1)
      gt_shape = (640, 640) # the shape of your patch
      interpolated_mask = F.interpolate(predicted_masks, gt_shape, mode="bilinear", align_corners=False)
      predicted_masks = interpolated_mask.float()

    • @beyondprogramming2735
      @beyondprogramming2735 Місяць тому

      @@carlosjarrin3170 Is there any way to fix it? because I have dataset with all images of dimension 64x273 so I did not make patches of the images. and because of this size problem I am not able to train SAM

  • @4Selnur
    @4Selnur 4 місяці тому

    Are you planning on a similar tutorial for SAM2?

    • @DigitalSreeni
      @DigitalSreeni  4 місяці тому +3

      SAM2 is similar but I can do a video on multi-class segmentation using SAM2. This example is just a single class.

  • @maheethabharadwaj8016
    @maheethabharadwaj8016 11 місяців тому

    Thank you so much for this incredible and praactical video. Is there a way to segment multiple different objects within the same model or does it need to be two separate? For example if i wanted to segment both mitochondria and lysosomes (and train a model to recognizes BOTH those things but as different things). would i need a separate SAM for mito vs lysosomes? Is there a way to do it that would be combined?

  • @timanb2491
    @timanb2491 Рік тому +1

    how to unpatch the images?

  • @barryjuait
    @barryjuait Рік тому

    And do I get the bounding boxes from the resulting mask?

  • @ariharasudhanmuthusami2272
    @ariharasudhanmuthusami2272 Рік тому

    Is it possible to use text prompts for fine tuning?

  • @AnkurDe-nz9in
    @AnkurDe-nz9in 7 місяців тому +1

    Hey there! Great work. I came across this video while researching about Segmentation using Transformers. However, on my dataset I am facing a problem. In the cell
    train_dataset = SAMDataset(dataset=dataset, processor=processor)
    example = train_dataset[0]
    for k,v in example.items():
    print(k,v.shape)
    I am getting an error which says Unsupported number of image dimensions: 2. I am using grayscale images here and have tried expanding the dimension of the images while reading it, only to give the same error. If anyone has any suggestion or is aware of some update I have missed, then please go on ahead and educate me :). Am in dire need of some help. Thanks.

  • @hamzawi2752
    @hamzawi2752 Рік тому +1

    I was going through the same problem of drop_last=True. This is simply because if the last batch in your dataset contains only 1 training sample, you will get this error since batch normalization can be applied to one training sample. For instance, if the batch size is 2, and your training dataset is 101, in this case, you have 51 batches, the last batch contains only one training sample, and this absolutely will throw an error. You can generate this error and comment right here.

  • @vinnykun3440
    @vinnykun3440 2 місяці тому

    how could I train this on my datasets on roboflow?

  • @valenparraful
    @valenparraful 9 місяців тому +1

    Hello DigitalSreeni, thank you for this tutorial. I'm getting an error and it's driving me crazy, because I am running your notebook and the same dataset. Everything runs fine, getting exactly the same results, up to the moment where we check an example from the dataset:
    example = train_dataset[0]
    for k,v in example.items():
    print(k,v.shape)
    I am getting the following error (Unsupported number of image dimensions: 2):
    ValueError Traceback (most recent call last)
    Cell In[17], line 1
    ----> 1 example = train_dataset[0]
    2 for k,v in example.items():
    3 print(k,v.shape)
    Cell In[14], line 24
    21 prompt = get_bounding_box(ground_truth_mask)
    23 # prepare image and prompt for the model
    ---> 24 inputs = self.processor(image, input_boxes=[[prompt]], return_tensors="pt")
    26 # remove batch dimension which the processor adds by default
    27 inputs = {k:v.squeeze(0) for k,v in inputs.items()}
    File c:\Users\F72070\Document\FC20-dipnn-sot\env_fc20\Lib\site-packages\transformers\models\sam\processing_sam.py:71, in SamProcessor.__call__(self, images, segmentation_maps, input_points, input_labels, input_boxes, return_tensors, **kwargs)
    57 def __call__(
    58 self,
    59 images=None,
    (...)
    65 **kwargs,
    66 ) -> BatchEncoding:
    67 """
    68 This method uses [`SamImageProcessor.__call__`] method to prepare image(s) for the model. It also prepares 2D
    69 points and bounding boxes for the model if they are provided.
    70 """
    ...
    --> 200 raise ValueError(f"Unsupported number of image dimensions: {image.ndim}")
    202 if image.shape[first_dim] in num_channels:
    203 return ChannelDimension.FIRST
    ValueError: Unsupported number of image dimensions: 2
    Any ideas or suggestions would be very appreciated!

    • @davidsolooki3051
      @davidsolooki3051 9 місяців тому +3

      Try this:
      image = np.expand_dims(image, axis=-1) # Add channel dimension
      image = np.repeat(image, 3, axis=-1) # Repeat grayscale channel to create 3 channels
      The SAM Processor expects to get 3 input channels. Adding these above two lines of code to the __getitem__ method in the SAMDataset class should solve this issue. See the full example below
      #######################################################
      from torch.utils.data import Dataset
      class SAMDataset(Dataset):
      """
      This class is used to create a dataset that serves input images and masks.
      It takes a dataset and a processor as input and overrides the __len__ and __getitem__ methods of the Dataset class.
      """
      def __init__(self, dataset, processor):
      self.dataset = dataset
      self.processor = processor
      def __len__(self):
      return len(self.dataset)
      def __getitem__(self, idx):
      item = self.dataset[idx]
      image = item["image"]
      image = np.expand_dims(image, axis=-1) # Add channel dimension
      image = np.repeat(image, 3, axis=-1) # Repeat grayscale channel to create 3 channels
      ground_truth_mask = np.array(item["label"])
      # get bounding box prompt
      prompt = get_bounding_box(ground_truth_mask)
      # prepare image and prompt for the model
      inputs = self.processor(image, input_boxes=[[prompt]], return_tensors="pt")
      # remove batch dimension which the processor adds by default
      inputs = {k:v.squeeze(0) for k,v in inputs.items()}
      # add ground truth segmentation
      inputs["ground_truth_mask"] = ground_truth_mask
      return inputs

    • @billlee2641
      @billlee2641 8 місяців тому +1

      @@davidsolooki3051 thanks!

  • @KennethSu-e1y
    @KennethSu-e1y Рік тому +1

    Is there a way that we can use SAM for an image sequence? I'm trying to segment grains and pore area for small sand.

  • @sulaimanmahmoud7120
    @sulaimanmahmoud7120 Рік тому +1

    Thanks for great video
    Is the same way can I apply it on multi class

  • @jacobidoko3924
    @jacobidoko3924 6 місяців тому

    How does this model compare to the nnUNetv2 model?

  • @juliannad9879
    @juliannad9879 8 місяців тому

    This is great thanks a lot ! However, since you deleted the images with empty masks, this means that this can work only for images where there are mitochondria. Could this be extended so that the model returns an empty mask when there is no mito ? (or other things for other applications)

  • @billlee2641
    @billlee2641 8 місяців тому

    May I know where is the 12 images tif? the website only gives us two sets of tif, each have 165 images

  • @권령섭학생협동과정조
    @권령섭학생협동과정조 10 місяців тому +1

    Hello Sir! I want to fine-tune my satellite datasets to delineate crop field parcels. But I am confused how to prepare masks for them. I want each crop parcel has different number (like instance segmentation). But it seems this tutorial provide for binary segmentation. How to solve this issue? Can you give me some advice to prepare masks datasets?

  • @pyroswolf8203
    @pyroswolf8203 Рік тому

    Hi, Thanks for the video, is there a option that we can add point prompts ?

    • @ortiznicola8022
      @ortiznicola8022 8 місяців тому

      hello, I'm trying to do that right now. Please tell me if you were able to do it

  • @jerinantony007
    @jerinantony007 11 місяців тому

    Hi, good content. How can we train overlapping case? Train with one box and it's segment mask at a time? Or can we train with all boxes at a time utilising three output channels?

  • @mehrdadpasha7843
    @mehrdadpasha7843 6 місяців тому

    Hello Sreeni, first of I really enjoy your videos and they are really awesome. I was trying to re-run the code you have but I am facing to an issue on the line where you have example = train_dataset[0]. I get the following error: ValueError: Unsupported number of image dimensions: 2. is there any package I am missing? your help would be appreciated.

  • @princekhunt1
    @princekhunt1 Місяць тому

    Nice tutorials

  • @timanb2491
    @timanb2491 Рік тому

    great job! thanks!

  • @mith888
    @mith888 9 місяців тому

    Классное видео ! Спасибо за подробное объяснение!

  • @phoenix1799
    @phoenix1799 9 місяців тому

    How to make a tif file for images and masks if I have custom data to train or is there any work around to train the model on custom data?

  • @mohansantokhi3434
    @mohansantokhi3434 Рік тому

    Where in the notebook segment-anything repo is used.

  • @shamukshi
    @shamukshi Рік тому

    can you do freelancing ? "solar panel counting from UAV images using SAM"

  • @jww1027
    @jww1027 Рік тому

    Please post a video on deep image prior.Thanks

  • @timanb2491
    @timanb2491 Рік тому

    if we already have prompt(mask) for test image as an input, why we use SAM to get the mask ? I mean - we already have an answer, how using SAM will help us?

  • @danieleneh3193
    @danieleneh3193 10 місяців тому

    Please can you make a video on fine tuning for coco.json data set. Is it possible to fine tune the model for multi-class images

  • @danieleneh3193
    @danieleneh3193 10 місяців тому

    Good day Sir please is it possible to us the SamautomaticMaskgenerator with fine tuned model please how can we generate the mask in the same way SamautomaticMaskgenerator works.

  • @ManikandanSathiyanarayanan
    @ManikandanSathiyanarayanan Рік тому

    Hi sreeni, great video it is very helpful for me. i was trying to fine tune model for my own custom data but it has 3 channels. while preparing Pytorch custom dataset i had error like "ValueError: zero-size array to reduction operation minimum which has no identity". can you help me to sort out this issue?

    • @DigitalSreeni
      @DigitalSreeni  Рік тому

      This error probably refers to one of your training masks being blank. Try to sort your masks so you only use the ones where you have some information, otherwise the tensor would be empty.

    • @ManikandanSathiyanarayanan
      @ManikandanSathiyanarayanan Рік тому +1

      Hi sreeni Thanks for your reply. I have trained SAM model for RGB image but prediction result was empty . can you please tell me what could be wrong?
      @@DigitalSreeni

    • @suzystone4270
      @suzystone4270 Рік тому +1

      I am trying this tutorial on Breast-Ultrasound-Images-Dataset on Kaggle, I get the same error message during creating a DataLoader instance. When I try to convert to mask into np.array to get the ground_truth_seg, np_unique(ground_truth_seg) does not output array([0, 1], dtype=int32). Instead it outputs an array of bunch of numbers and dtype is. uint8 instead.

    • @suzystone4270
      @suzystone4270 Рік тому

      @@DigitalSreeni Thank you! Yes I was getting the same error as I mentioned before and it was because of the blank masks. I filtered them and the error went away.

    • @هادیشوکتی-ث5و
      @هادیشوکتی-ث5و Рік тому

      Hello. I also need to work with RGB data. Could you please your modified code with me?

  • @mohammed-yassinebarnicha
    @mohammed-yassinebarnicha 6 місяців тому

    can someone please explain to me how can i use this model in the same context but with multiple classes i'm trying to train a sam mode on the fickr material dataset so that it detects materials composing objects

  • @manalkamal1795
    @manalkamal1795 7 місяців тому

    Hi i have used your code in order to fine tune sam in order to segment aerial images , but when i use my finetunedsam.pth it doesn’t even segment the images that it used to segment with no finetuning, what do you think is the problem ? Thank you in advance !!

  • @DDDOOO-r9e
    @DDDOOO-r9e Рік тому +1

    Great work, but I have some trouble.
    Instead of the example images you provided, I have used mine which are 200x200. However, I have encountered two problems:
    - The images have to be in grayscale if they are RGB the program stops working in "batch = next(iter(train_dataloader))"
    - The images have to be 256x256. If I use my 200x200 grayscale images it crashes when training, more specifically when calculating the loss. It says that the ground truth is 200x200, and the prediction is 256x256.
    Do you know how I can fix this problem?

    • @NicolaRomano
      @NicolaRomano Рік тому +1

      My guess is you can just zero pad your image and it should work (np.pad makes that very easy)

    • @DDDOOO-r9e
      @DDDOOO-r9e Рік тому

      @@NicolaRomano Thank you! Could you handle work with RGB images?

    • @NicolaRomano
      @NicolaRomano Рік тому

      @@DDDOOO-r9e you should definitely be able to, I haven't tried honestly, you'll probably simply need to take into account the different shape of the image (e.g. (3,256,256) instead of (256,256)). But also, it depends what you want to do (e.g. do you need segmenting the three channels together or separately?)

  • @sanjanakala5723
    @sanjanakala5723 Рік тому

    Hi, How can we train SAM with RGB images and masks like dubai aerial segmentation dataset , can you help with some feedbacks?

    • @هادیشوکتی-ث5و
      @هادیشوکتی-ث5و 11 місяців тому

      Hello. I also want to modify the code for RGB images. Did you successfully execute the code?

  • @saimohan5972
    @saimohan5972 5 місяців тому

    can we train sam on custom image size? I have a dataset that has an image size of 128x128 and I am unable to figure out how to train the model. any help would be appreciated.

    • @DigitalSreeni
      @DigitalSreeni  4 місяці тому

      SAM was originally trained on 1024x1024 images. It uses a ViT (Vision Transformer) backbone that expects this input size. Training directly on 128x128 images is challenging because SAM's architecture is designed for larger images. The model's receptive field and positional encodings are tailored for 1024x1024 inputs. You could upsample your 128x128 images to 1024x1024 before feeding them into SAM.

  • @InbalCohen-p1n
    @InbalCohen-p1n 4 місяці тому

    Thanks for the great video. I am getting this error: AssertionError: ground truth has different shape (torch.Size([1, 1, 1024, 1024])) from input (torch.Size([1, 1, 256, 256])). Does anyone know how to solve it without using interpolation?”

  • @strongwarrior0210
    @strongwarrior0210 Рік тому

    Kindly run df-gan and hifi-gan code. Your code videos are really helpful please help me in running these codes

  • @shubhsinghal8258
    @shubhsinghal8258 11 місяців тому

    predicted_masks = outputs.pred_masks.squeeze(1)
    ground_truth_masks = batch["ground_truth_mask"].float().to(device)
    loss = seg_loss(predicted_masks, ground_truth_masks.unsqueeze(1))
    can you explain the output shapes and why ground_truth masks are unsqueezed?

  • @anbuingoc4495
    @anbuingoc4495 10 місяців тому

    Dear, how can i modify to train with input shape (512x512x3). Reply me plz~~~

    • @Theredeemer-wc6ly
      @Theredeemer-wc6ly 8 місяців тому +1

      x3 means that it is a color image, change it to greyscale so it is 2d. 512 by 512

    • @anbuingoc4495
      @anbuingoc4495 8 місяців тому

      @@Theredeemer-wc6ly thank you bro for replying me 🙏

  • @tektronix475
    @tektronix475 Рік тому

    hi sreeni n ppl! does anyone know about any computer vision ML online forum, to post related questions?. Thx!

  • @johanhaggle7949
    @johanhaggle7949 Рік тому +1

    What if you have bigger objects than mitochondria so that the patches of 256x256 are to small? In this video (video 206) ua-cam.com/video/LM9yisNYfyw/v-deo.html you say that patches should be at least 4 times bigger than the objects. But what if the object is big and I try to change patch size from 256 to e.g. 512 in your colab script I get this error: "Error: AssertionError: ground truth has different shape (torch.Size([2, 1, 512, 512])) from input (torch.Size([2, 1, 256, 256]))"

  • @Jay-kb7if
    @Jay-kb7if Рік тому

    what's up with tffs dude.

  • @yi9itc4n
    @yi9itc4n 8 місяців тому +1

    this shi complicated af

  • @cXedis
    @cXedis Рік тому +12

    darkmode please....... for the love of all that is holy.....

  • @alin5163
    @alin5163 5 місяців тому +2

    Thanks!

  • @hafsamoontariali6984
    @hafsamoontariali6984 3 місяці тому

    Thanks!