GTO-2-03: Computing Mixed-Strategy Nash Equilibria

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 40

  • @lherath8658
    @lherath8658 3 роки тому +17

    Thank you from the bottom of my heart!! It's not a complicated thing, I don't understand why professors can't just go over it once properly. I was so confused until I found this video. Hope the best of best to you!

  • @amirkhan355
    @amirkhan355 4 роки тому +12

    I have a strong background in math, and these videos are by far the best I've found online that explain things extremely clearly. Thank you!

  • @zhilangzhong7871
    @zhilangzhong7871 2 роки тому +1

    Thank you so much, spending a few minutes here is much more worth listening to my lecturer...

  • @PB-cb7ht
    @PB-cb7ht 3 роки тому +2

    great video. I'm a second year economics undergrad and still find stuff like this useful aha

  • @101dostoyevsky
    @101dostoyevsky 7 років тому +3

    Thank you very much. I'm finally getting Mixed Strategies. God bless.

  • @abdoulayesaadou4448
    @abdoulayesaadou4448 6 років тому +1

    Thanks a lot. I understood how to compute the probabilities in the case of two players. What if we had 4 players instead? Suppose player 1 & 2 maintain their strategies while players 3 & 4 adopt player 2's strategies.

  • @LarryP248
    @LarryP248 Рік тому

    I'm riveted by this content. A book I read with kindred insights was the impetus for major life changes. "Game Theory and the Pursuit of Algorithmic Fairness" by Jack Frostwell

  • @maggielin8664
    @maggielin8664 6 років тому

    Dear Prof. Leyton-Brown, in the battle of sexes the expected utility for both is 2/3, it is even worse than the passive case for each.

  • @anabelleginez1822
    @anabelleginez1822 3 роки тому

    If we find a negative probability for player 1 and a positive probability for player 2, is it an equilibrium in mixed strategies?

  • @Olav3D
    @Olav3D 7 років тому

    Thanks! I finally understand the calculations :)

  • @SUPER7X
    @SUPER7X 2 роки тому

    Helpful. Thank you!

  • @Saeed-jf8lg
    @Saeed-jf8lg 2 роки тому

    so what about a 3x3 bimatrix game? can't find this anywhere. meaning, with the same process. using probabilities

    • @kzoo_
      @kzoo_ 6 місяців тому

      hello, im not sure if you still need help with this, but the method to compute mixed nash remains largely the same: assign probabilities p1, p2, and 1-p1-p2 to actions.

  • @emiliaborko7016
    @emiliaborko7016 4 роки тому

    Thank you so much ! 'm so glad I found this channel

  • @ossamazaiter3302
    @ossamazaiter3302 6 років тому

    Excellent explanations, it would be great if we can have more realistic examples that can be used in management decisions.👍

  • @sdyz2161
    @sdyz2161 8 років тому

    this is actually really helpful and clear. thanks :)

  • @maryammusallam9032
    @maryammusallam9032 2 роки тому

    thank you so much, so clear.

  • @ojo7303
    @ojo7303 11 місяців тому

    4:02, but why does p2 care about making p1 indifferent? isn't p2 a self interested individual, so why does p1's payoffs matter?

  • @spooie1350
    @spooie1350 3 роки тому

    can there be only 1 mixed strategies?

    • @Boristien405
      @Boristien405 3 роки тому

      Nah there can be multiple. If it's symmetric and 2x2 then I think there's just one mixed NE though.

  • @cherrypoo9742
    @cherrypoo9742 4 роки тому +1

    Wow thanks a million! Definitely a new subby! I like your teaching style it’s very clear and detailed please don’t change this style and can you please make a video on “Auctions”. I really need you to show me the whole concept behind it just like you did with this mixed strategy, that was genius!

  • @NoName-kr3se
    @NoName-kr3se 7 років тому +9

    no comprehend

  • @AsakuraYukiko
    @AsakuraYukiko 4 роки тому

    Test tomorrow, I got it.

  • @xinruiyang6059
    @xinruiyang6059 8 років тому

    Thank you ! It is really helpful!

  • @meditationwithtyler
    @meditationwithtyler 4 роки тому

    I only have a background in Algebra. At 5:24, I don't know how to solve the equation. To me it looks like 2p = 1(-1p), which becomes 1p = 1..

    • @thanhminhcao3356
      @thanhminhcao3356 3 роки тому

      2p=1(1-p) implies 2p=1-p hence 3p =1. P=1/3

    • @ShinobiStriker
      @ShinobiStriker 2 роки тому

      @@thanhminhcao3356 This still doesn't make that much sense to me

  • @MightySwifter
    @MightySwifter 6 років тому

    finally understand this. thanks!

  • @HangNguyen-wu3fs
    @HangNguyen-wu3fs 7 років тому

    what do you mean by indifference?

    • @sayaks12
      @sayaks12 7 років тому +1

      panbee hằng the way I interpret it is that it doesn't matter to me what I choose, I'd get just as much expected utility from each option.
      like say I had an option of getting $10, or flipping a coin and getting $20 if it's heads. in the first option I'd expect to get $10, in the second I'd expect to get $20 half of the time, so I expect $10 om average. so I'm indifferent, it doesn't matter which I choose cause I'd expect to get $10 either way on average.

    • @HangNguyen-wu3fs
      @HangNguyen-wu3fs 7 років тому

      Thank you. The wording was weird in the lecture :)

    • @thanhminhcao3356
      @thanhminhcao3356 3 роки тому

      Equal utility

  • @jillianyip4098
    @jillianyip4098 8 років тому +1

    how was p & 1-p derived?

    • @stapler1636
      @stapler1636 4 роки тому +3

      Four years later, but the probabilities must sum to 1. So (probability of choosing F) for player 2 is (1- (probability of choosing B)). Letting probability of choosing B be symbolized as p, we have probability of choosing F to be (1-p).

  • @mawutjokfilms
    @mawutjokfilms 7 років тому

    thanks

  • @iremlergun
    @iremlergun 8 років тому

    Awesome!

  • @serinacat4781
    @serinacat4781 7 років тому

    thanks very clear

  • @FG-fc1yz
    @FG-fc1yz 2 роки тому

    3:59