Solving 3a+5ab+b=39 | A Diophantine Equation

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 38

  • @WahranRai
    @WahranRai 17 годин тому +1

    1:34 Dont stop !
    5b + 3 is a factor then : multiply both sides by 5 and add 3 to both sides --->
    15a(5b + 3) + 5b + 3 = 39*5 + 3 ---> (15a + 1)*(5b+3) = 198 without using fractions !

  • @agytjax
    @agytjax 11 годин тому +1

    Thank God! Today he did not call the second method first 🤣🤣

  • @linoubennani1004
    @linoubennani1004 День тому +4

    You forgot another solution : a=1, b=6

    • @Taric25
      @Taric25 23 години тому +1

      a + b = a + (39 - 3a)/(5a + 1), where a is any number, except -⅕. Nowhere in the thumbnail did it specify that a and b have to be integers.
      If they must be integers, then there are 5 solutions, where a equals -20, -2, 0, 1, 2 or 13, while b equals -1, -5, 39, 6, 3 or zero, respectively.

    • @robertveith6383
      @robertveith6383 5 годин тому

      ​​@@Taric25 -- *Thumbs-down.* Because it is a Diophantine equation, that means, in part, we are only interested in integer solutions. Also, you wrote out six solutions, not five. Do not spell out 'zero" in this context. Write it just like the others.

  • @dan-florinchereches4892
    @dan-florinchereches4892 День тому +2

    I think we can set up the equation as
    b(5a+1)+3/5(5a+1-1)=39
    (b+3/5)(5a+1)-3/5=39 multiply by 5 so
    (5b+3)(5a+1)=195+3
    (5b+3)(5a+1)=198
    Now if a and b are integers we can get a few pairs of solutions, as 198=2*99=2*3*33=2*3^2*11
    (a,b)€{(0,39)from1*198,(-20,-1) from -99*-2,(13,0) from 66*3,(-2,-5) from -9*-22,(2,3) from 11*18,(1,6) from 6*33}

  • @texwiller7577
    @texwiller7577 День тому +3

    You forgot:
    a = 2, b = 3

  • @reconquistahinduism346
    @reconquistahinduism346 День тому +4

    a=2, b = 3. So a+b = 5.

  • @EdjarbasOliveiraJunior
    @EdjarbasOliveiraJunior День тому +2

    You forgot (1,6); (-2,-5) and (-20,-1).

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому +2

    a+b=(39-b)/(3+5b)+b...b=6(a=1),b=3(a=2),b=0(a=13),b=-1(a=-20),b=-5(a=-2)

  • @元兒醬
    @元兒醬 День тому +3

    1,6

  • @ronbannon
    @ronbannon День тому +2

    (−20,−1), (−2,−5), (0, 39), (1, 6), (2, 3), and (13, 0) are the only integral solution. I suggest rewriting as a rational function to see that you have a minimal set of values to choose from. A visual, even a rough one, often offers insight.

    • @Taric25
      @Taric25 23 години тому +1

      You said integral. You meant integer.

    • @SyberMath
      @SyberMath  19 годин тому

      Very cool!

    • @ronbannon
      @ronbannon 16 годин тому

      @@Taric25 Integral solutions refer to solutions of equations that are integers.

    • @Taric25
      @Taric25 16 годин тому +1

      @@ronbannon Integral solutions are solutions of definite or indefinite integrals. Claiming otherwise introduces ambiguity.

  • @Qwentar
    @Qwentar День тому

    Second method, at step 1 you missed multiplying the right hand side (39) by 5 (195). Then for step 2 you add 3 to both sides to get the 198 you were looking for.

  • @JamesKang95
    @JamesKang95 День тому

    3a•5+5ab•5+b•5=39•5
    (5a+1)(5b+3)=195+3=198=2•99
    =2•3•3•11=11•18=6•33
    =1•198=66•3
    5a+1=11,5b+3=18
    5a+1=6,5b+3=33
    5a+1=1,5b+3=198
    5a+1=66,5b+3=3

  • @E.h.a.b
    @E.h.a.b День тому

    Third Method (trial and error)
    3 a + 5 a b + b = 39
    a (3+5 b) = 39 - b
    a = (39 - b)/(3+5 b)
    Now set (b) value and check for resulting (a) value as integer
    b a
    ----------------------
    0 39/3 = 13
    1 38/8 err
    2 37/13 err
    3 36/18 = 2
    4 35/23 err
    5 34/28 err
    6 33/33 = 1 // No need for further checks, all results will be < 1
    Just one only check for (b) = 39
    39 0/?? = 0
    Final results of (a,b) = { (0,39), (1,6), (2,3), (13,0) }

  • @SrisailamNavuluri
    @SrisailamNavuluri День тому

    3a,39 are multiples of 3
    So b=0,3,6,9,..
    a=39,2,1, fractions
    So (a,b)=(39,0),(2,3),(1,6)
    For b=-3,-6,-9,
    a=fractions.
    There are3 pairs of integer solutions.

  • @ChristopherEvenstar
    @ChristopherEvenstar День тому

    I liked it, and I liked the use of mod to examine factors of 198. Thank you!

  • @Don-Ensley
    @Don-Ensley День тому

    problem
    3a + 5ab + b = 39
    a+b = ?
    Factored into
    (5 a + 1) (5 b + 3) = 198
    = 11 • 18
    = 6 • 33
    Got
    (a, b) ∈ { (2, 3), (1, 6) }
    answer
    a+ b ∈ { 5, 7 }

  • @neuralwarp
    @neuralwarp День тому

    If you're going to "solve" it by trying all the possibilities, you could just write a short piece of program code.

    • @SyberMath
      @SyberMath  День тому

      Can you do that for me? 😁

  • @Qermaq
    @Qermaq 21 годину тому

    5, 7, 13, 39. What a headache!

  • @SIB1963
    @SIB1963 22 години тому

    RHS is 195, not 198.

  • @damiennortier8942
    @damiennortier8942 День тому

    "put a little 1 here"
    I pretty sure that it was a normal 1 😅

  • @part6133
    @part6133 День тому

    Should have been pos. integers only

  • @Taric25
    @Taric25 23 години тому +1

    a + b = a + (39 - 3a)/(5a + 1), where a is any number, except -⅕. Nowhere in the thumbnail did it specify that a and b have to be integers.
    If they must be integers, then there are 5 solutions, where a equals -20, -2, 0, 1, 2 or 13, while b equals -1, -5, 39, 6, 3 or zero, respectively.

    • @SyberMath
      @SyberMath  19 годин тому

      chk the title

    • @Taric25
      @Taric25 19 годин тому +1

      @SyberMath Fantastic, did I say thumbnail or title? I said thumbnail, thank you very much.

    • @robertveith6383
      @robertveith6383 5 годин тому

      You're being corrected again, because you don't know what you are talking about. In the thumbnail, Diophantine equations refer to those where we are only interested in integer solutions.

  • @InnocentNeuron
    @InnocentNeuron День тому

    (1, 6), (2, 3)

  • @sidharthd4400
    @sidharthd4400 День тому

    Nice

  • @sidharthd4400
    @sidharthd4400 День тому

    RHS x5