Linear Algebra - Lecture 31 - Linearly Independent Sets and Bases

Поділитися
Вставка
  • Опубліковано 3 лис 2024

КОМЕНТАРІ • 6

  • @nathangali
    @nathangali 5 років тому +3

    great video, really helpful!

  • @mysteriousboi1019
    @mysteriousboi1019 4 роки тому

    Keep it going, man!

  • @dktchr3332
    @dktchr3332 5 років тому

    At 3:39, am unclear what is meant by "is the zero function" (at least thats what i'm hearing in your narration) after you've said that we're not interested in only one value of x since the equation will equal zero at a particular value (and appropriate multiples of it) of x and allowing the scalars to be equal (or it could also be done w different value of x and appropriate values of the scalars).

    • @HamblinMath
      @HamblinMath  5 років тому +2

      For "sin x" and "cos x" to be linearly independent *functions*, there would have to be values of u1 and u2 for which u1 sin x + u2 cos x equals the zero function (which is zero no matter what you plug in for x). It wouldn't be enough for u1 sin x + u2 cos x to equal zero for some particular value of x.

    • @dktchr3332
      @dktchr3332 5 років тому +2

      @@HamblinMath Got it, thanks.

  • @user-xn4yu5rn9q
    @user-xn4yu5rn9q 4 роки тому

    Thank you so much