Natural Deduction or Proof Trees? Which is best? | Attic Philosophy

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 9

  • @andersedson4658
    @andersedson4658 2 роки тому +5

    Any chance you’ll ever make a video on sequent calculus?

  • @patriciomendez644
    @patriciomendez644 2 роки тому

    Thanks for the thorough explanation of the side by side examples. Great content!

  • @Pitometsu
    @Pitometsu Рік тому +1

    Why for proof tree we supposed to start with the negation here, when the proof is pretty straight-forward (e.g. for natural deduction)?
    λ p2q2r : P → Q → R.
    λ p2q : P → Q.
    λ p : P.
    (p2q2r p) (p2q p) : R
    : p2q2r : P → Q → R, p2q : P → Q ⊢ P → R
    : p2q2r : P → Q → R ⊢ (P → Q) → (P → R)
    : ∅ ⊢ (P → (Q → R)) → ((P → Q) → (P → R))
    ■ Q.E.D.

    • @AtticPhilosophy
      @AtticPhilosophy  Рік тому +1

      Proof trees start with the negation of the conclusion. The proof you’ve given here is natural deduction style, like the one in the video.

  • @Pitometsu
    @Pitometsu Рік тому

    As a bottom line: looks like proof trees more expressive when there's a lot of negations or disjunctions.

    • @AtticPhilosophy
      @AtticPhilosophy  Рік тому +1

      They’re just as powerful as one another, but proof trees deal with disjunction in a simpler way

  • @darrellee8194
    @darrellee8194 10 місяців тому

    It looks to me like proof trees would be easier to a lot easier automate.