A Nice Math radical problem| what is the value of a | Math Olympiad | a=?

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 7

  • @AfsarSaid-f8s
    @AfsarSaid-f8s 3 дні тому +1

    Good question waheeb Sir

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 дні тому +1

    (a+Sqrt[a^2-1])/(a-Sqrt[a^2-1])+(a-Sqrt[a^2-1])/(a+Sqrt[a^2-1])=34 a=±3

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 дні тому +1

    It’s in my head.

  • @yiqiwang
    @yiqiwang 3 дні тому +1

    So easy, I can solve it without a pen.

  • @ManojkantSamal
    @ManojkantSamal 2 дні тому

    4a^2-2=34
    4a^2=34+2=36
    a^2=36/4=9
    a=±3

  • @key_board_x
    @key_board_x 2 дні тому

    { [a + √(a² - 1)] / [a - √(a² - 1)] } + { [a - √(a² - 1)] / [a + √(a² - 1)] } = 34 → let: b = √(a² - 1)
    [(a + b)/(a - b)] + [(a - b)/(a + b)] = 34
    [(a + b)/(a - b)] + [1/{(a + b)/(a - b)}] = 34 → let: x = (a + b)/(a - b)
    x + (1x) = 34
    (x² + 1)/x = 34
    x² + 1 = 34x
    x² - 34x + 1 = 0
    Δ = (- 34)² - (4 * 1) = 1152 = 2 * 24²
    x = (34 ± 24√2)/2
    x = 17 ± 12√2
    First case: x = 17 + 12√2
    (a + b)/(a - b) = 17 + 12√2
    a + b = (17 + 12√2).(a - b)
    a + b = 17a - 17b + 12a√2 - 12b√2
    16a - 18b + 12a√2 - 12b√2 = 0
    8a - 9b + 6a√2 - 6b√2 = 0
    8a + 6a√2 = 9b + 6b√2
    2a.(4 + 3√2) = 3.(3 + 2√2).b → recall: b = √(a² - 1)
    2a.(4 + 3√2) = 3.(3 + 2√2).√(a² - 1)
    √(a² - 1) = 2a.(4 + 3√2)/[3.(3 + 2√2)] → by squaring both sides
    a² - 1 = 4a².(4 + 3√2)²/[3.(3 + 2√2)]²
    a² - 1 = 4a².(16 + 24√2 + 18)/[9.(9 + 12√2 + 8)]
    a² - 1 = 4a².(34 + 24√2)/[9.(17 + 12√2)]
    a² - 1 = 8a².(17 + 12√2)/[9.(17 + 12√2)]
    a² - 1 = 8a²/9
    a² - (8a²/9) = 1
    (9a² - 8a²)/9 = 1
    a² = 9
    a = ± 3
    Second case: x = 17 - 12√2
    (a + b)/(a - b) = 17 - 12√2 → we can easily deduce that the result will be the same as above
    a = ± 3 → recall: b = √(a² - 1)
    b = √8
    b = 2√2
    First solution: a = 3 → b = 2√2
    Second solution: a = - 3 → b = 2√2