IDUP Cours 16 - Transformée de Fourier, Premières Propriétés

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 47

  • @pascalmathieu2442
    @pascalmathieu2442 3 роки тому +7

    C'est toujours un bonheur de vous écouter. Grand grand merci pour ce que vous faites. Grace à vos cours j'ai pu obtenir l'agreg interne.

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  3 роки тому +1

      Woua ! Toutes mes félicitations ! Je ne peux pas vous dire à quel point je suis ravi pour vous !
      Bonne continuation.

  • @DamassiTV
    @DamassiTV 3 роки тому +6

    Je me sens heureux quand je regarde les cours de ce professeur parce que sa façon d'expliquer est tellement incroyable ❤️

  • @lamyarochdi9325
    @lamyarochdi9325 Рік тому +1

    Vous me facilitez la compréhension de ce cours en faisant le lien entre chaque concept. Je vous remercie pour ce cours complet et pertinent!

  • @ganaouiilias1617
    @ganaouiilias1617 2 роки тому +1

    Un professeur comme vous c'est le jour est la nuit !

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  2 роки тому

      Je suis très sensible à votre appréciation. Cela me conforte dans l'utilité de cette Chaîne.

  • @enelderuisseau8257
    @enelderuisseau8257 2 роки тому +1

    Merci pour ces enseignements. Vous expliquez très bien.

  • @houssemohadada445
    @houssemohadada445 11 місяців тому +1

    Merci professeur

  • @djibytall7410
    @djibytall7410 3 роки тому

    Merci beaucoup professeur pour ce cours, franchement ça m'a beaucoup aider et ça m'a permis de revoir certaines détailles très importantes que j'avais négligées !!

  • @TheGuitarfr
    @TheGuitarfr 3 роки тому +1

    Un régal !!! Encore merci pour ce partage

  • @yasminelahdheri6196
    @yasminelahdheri6196 Рік тому +1

    Merci beaucoup pour cet vidéo

  • @STEVESOBGOU
    @STEVESOBGOU 5 місяців тому

    Salut. Pour qu'elle classe de fonction les transformées de fourier sont définie dans ce cours.

  • @noureddinebenaichouche4753
    @noureddinebenaichouche4753 Рік тому

    La fonction psi(x) n'est pas continue en t, car pour x=t psi(x)=1

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  Рік тому

      Pour t fixé dans [a,b], je démontre que psi(x) tend vers psi(x_0) quand x tend vers x_0, pour n'importe quelle valeur de x_0 choisie dans [a,b]. En particulier si x_0=t, on a encore psi(x) qui tend vers psi(t) dans x tend vers t.

  • @thiernomamadoubalde6573
    @thiernomamadoubalde6573 3 роки тому +2

    Encore très clair
    Longue vie à vous Professeur.
    Pouvons nous avoir vos évaluations de cette années surtout pour l'analyse numérique et mathématique des EDPs ? Merci

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  3 роки тому

      Merci beaucoup pour votre appréciation ainsi que pour vos vœux.
      Qu'entendez-vous par "vos évaluations" ?

  • @hibaawi2110
    @hibaawi2110 3 роки тому

    السلام عليكم ورحمة الله وبركاته
    شكرا دكتورنا ربي بارك فيك ويحفضك😊

  • @eldouwen7839
    @eldouwen7839 5 місяців тому

    Je ne parviens pas à comprendre en quoi la fonction. est continue pour la valeur x=t
    Il me semble que si on dessine le graphique en fonction de x du coup on voit bien la discontinuité
    c'est moi ou ..?

  • @rayaneloumi5956
    @rayaneloumi5956 Рік тому

    Bon ilustration,merci

  • @hafidmataich7842
    @hafidmataich7842 3 роки тому +1

    Merci monsieur pour votre belle méthode de structurer les idées pour l’apprenant.
    Une demande s’il te plait, un cours qui porte sur un problème aux valeurs propres de bi-Laplacien, ou des cours ou documents sur le net dans ce sens.
    Merci infiniment pour vos efforts mon professeur.

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  3 роки тому +1

      Merci pour votre appréciation.
      Concernant le bi-laplacien ou tout autres exemples il me faut trouver une place dans le programme de cours que j'ai déjà à réaliser.
      Merci pour votre compréhension

    • @hafidmataich7842
      @hafidmataich7842 3 роки тому

      ​@@MathematicsAcademy_MA Merci de continue, votre chaine pour moi c'est une référence. Merci infiniment

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  3 роки тому +2

      @@hafidmataich7842 C'est bien prévu. Merci encore pour votre soutien et vos encouragements

  • @nonogege6935
    @nonogege6935 3 роки тому +1

    Merci pour le partage !

  • @Abdo-gt1iu
    @Abdo-gt1iu 3 роки тому +1

    Très bonne séance

  • @yasminelahdheri6196
    @yasminelahdheri6196 Рік тому

    Mais j'ai une question
    Pourquoi la transformée de Fourier est définie sur l'ensemble des fonctions continue et bornée et elle n'est pas définie sur C⁰(R) seulement ?
    De plus pourquoi le domaine L¹(R) n'est pas le domaine de définition le plus grand de la transformée de Fourier
    On dit dans le début de cet vidéo que le domaine C⁰([a,b]) est inclus dans L¹([a,b]) ?
    Et merci d'avance.

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  Рік тому

      Bonjour.
      Lorsqu'on majore |F(f)(x)|, vous voyez apparaitre naturellement la norme L¹(R) de f.
      Autrement dit, si f est dans L¹(R) alors F(f) définie comme une intégrale généralisée existe, puisque convergente.
      Pour autant, il s'agit d'une condition suffisante, et donc, on ne peut pas affirmer que c'est le plus grand ensemble qui permette de définir F(f).
      Par ailleurs, la norme de C⁰(R) n'apparait pas dans le cadre d'une majoration de F(f) qui pourrait garantir son existence.
      Enfin, si C⁰([a,b]) est inclus dans L¹([a,b]), ce n'est pas le cas si [a,b] est égal à R.

  • @victorlandor354
    @victorlandor354 2 роки тому +1

    La rolls des cours de maths sur internet

  • @Exkalibur-75
    @Exkalibur-75 2 роки тому

    Bonjour Monsieur.
    Un truc me chagrine dans l'application du début.
    Vous dites : on pose F(x) = int (a,b) f(t)dt et on veut donner un sens à cette expression; ceci sous-entend que ladite écrite écriture n'a pas de sens ! Et pour en donner un sens, vous en prenez la valeur absolue. N'est-ce-pas un cercle vicieux dans la mesure où la valeur absolue d'une expression qui n'a pas de sens, n'a pas plus de sens que l'expression qui est dans la valeur absolue ?

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  2 роки тому

      Bonjour.
      Je vais tenter d'éliminer votre chagrin.
      La suite d'inégalité que je construis montre que le nombre |F(x| est fini pour tout x. Il en est alors de même pour F(x). Sans jeu de mots, c'est la définition qui exprime que F est bien définie ou a un sens, pour tout x.
      En fait, ce qui vous gêne, c'est ce que l'on en dit jamais quasiment, à savoir que F(x) a un sens si sa valeur est finie. C'est ce que j'obtiens à partir de |F(x)|.
      J'espère que c'est plus clair à présent.

    • @Exkalibur-75
      @Exkalibur-75 2 роки тому

      @@MathematicsAcademy_MA
      En fait j'ai compris ceci : quand vous écrivez |F(x)|, la quantité qui se trouve dans la valeur absolue peut à priori être infinie (en + ou -) pour certains x. Mais le calcul formel montre qu'en fait, non !
      Conclusion : Le calcul est donc effectué à priori dans IR barre, et se conclut dans IR.

  • @baptistebuquet3958
    @baptistebuquet3958 2 роки тому

    20:05, c’est pas plutôt x

    • @MathematicsAcademy_MA
      @MathematicsAcademy_MA  Рік тому

      C'est bien ce que j'écris me semble t'il ...🤔 car pour une intégrale, supérieur ou strictement supérieur ne change rien...
      Par contre, soit x=t est compris dans l'intervalle [a,x), soit dans (x,b]. Là, il y a une petite coquille sans conséquence.