Q14, derivative of sinh^-1(x), two ways

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ •

  • @monicamagdy3595
    @monicamagdy3595 4 роки тому +11

    you have been teaching me math since the 11th grade. i am now in my second year in university. thank you for your immense help

    • @fahad_hassan_92
      @fahad_hassan_92 2 роки тому

      You're doing this in the 2nd year of uni?

    • @monicamagdy3595
      @monicamagdy3595 2 роки тому

      If you’re in engineering or take any calculus courses in uni you will need to know this yes :)

    • @fahad_hassan_92
      @fahad_hassan_92 2 роки тому

      @@monicamagdy3595 They teach this in 12th grade here so I was confused why you're learning in uni

  • @albertemc2stein290
    @albertemc2stein290 6 років тому +9

    Oh my cosh(y)! I love your videos about derivatives of inverse functions!

  • @nathanli9987
    @nathanli9987 6 місяців тому

    OMG! THANK YOU! The textbook doesn’t explain the method #2 how to get to the answers. For anyone who confuses about the part 2 cosh>=1, it is because cosh's range is [1, infinity), that's why you don't need to take the negative root of the function.

  • @MrBoubource
    @MrBoubource 6 років тому +3

    3:03 Why should "1+x^2" be used over "x^2+1"? Because the derivative of trig functions often look something like 1/sqrt(1 ± x^n) or something like that? hence the sometimes negative term at the end?

  • @goliathcleric
    @goliathcleric 6 років тому +13

    So happy to see you have a patreon page!

    • @blackpenredpen
      @blackpenredpen  6 років тому +2

      Thank you and I just saw you've just become a patron. Thank you!

  • @LancerGt-k3w
    @LancerGt-k3w 3 місяці тому

    2nd method is more conceptual and understandable. THANK you brother

  • @pinkiprajapati7748
    @pinkiprajapati7748 6 років тому +1

    Thanks sir,
    For making all questions solving with two method

  • @Apple-sq4wr
    @Apple-sq4wr 2 роки тому

    I am in first year in university and it helped me a lot. thank you for explaining clearly!

  • @quahntasy
    @quahntasy 6 років тому +1

    So happy to see you finally got a patreon page and people are supporting you!

  • @tanyungwei9985
    @tanyungwei9985 4 роки тому

    You’re a saviour, mathematically and mentally😍

  • @721cheukho7
    @721cheukho7 6 років тому +1

    already bought it! little fan from hong kong
    #YAY

  • @georgesadler7830
    @georgesadler7830 2 роки тому

    MR. Blackpenredpen, thank you for an awesome video/lecture on the derivative of hyperbolic Sinh inverse of x. I really like the first way, which is an old fashion way for differentiating the hyperbolic Sinh inverse of x.

  • @RichardChupa-x9f
    @RichardChupa-x9f Рік тому

    This was helpful I at least for the first time in class I got it right

  • @opredador4066
    @opredador4066 6 років тому +11

    Teacher, how to solve:
    1/sqrt(ln x) + 1/sqrt((x^4)) = 1/sqrt(2)?

    • @nathansauveur6704
      @nathansauveur6704 6 років тому +1

      Well, 1/sqrt(x^4) is x^2, so that's something. And after that you can square both sides maybe?

    • @opredador4066
      @opredador4066 6 років тому

      @@nathansauveur6704 i can not solve. 😓

    • @VaradMahashabde
      @VaradMahashabde 6 років тому +1

      Ok, took some time, but the recipe is done
      1. First, simplify the second term to 1/x^2 (why is it like that?)
      2. Then differentiate and get a value of 1/sqrt(ln(x)) (don't worry about the ln(x) in the value)
      3. Now, put the value in the original
      4. Next, shuffle stuff around to get all the x'es in the numerator
      5. Again. differentiate to eliminate the final ln(x) and get a 1/x in it's place
      6. Now finally you obtain a quadratic polynomial! A healthy breakfast to start your day!
      EDIT 2:
      Gotta show my work, so here:
      drive.google.com/file/d/1J0qgN_SfpgZZI0r2BR_h9UQQek4LH34H/view?usp=sharing
      EDIT:
      Ok problem!
      I calculate the answer to be +-8^1/4*iota, but cross checking with wolfram, the answer is 8.08104888432933... .
      All the engines seem to be taking squares, then LCMs and then getting a monster equation where everything is the numerator and then solving it numerically (hit-and-trial per-se (intelligently tho))
      As you can see, I differentiated, so a new approach, and it's 4am so I can't get it cross-checked(but no problems i see ;P )
      blackpenredpen , WE NEED YOUR HELP

    • @nathansauveur6704
      @nathansauveur6704 6 років тому +1

      @@VaradMahashabde Great! But why do you differentiate? Is that even a valid move?

    • @opredador4066
      @opredador4066 6 років тому

      @@VaradMahashabde give me your email? It is easier to exchange these ideas.

  • @JJones_2003
    @JJones_2003 2 роки тому

    This is awesome,it really helps me a lot.

  • @fiNitEarth
    @fiNitEarth 6 років тому +7

    Sounds quite interesting! But there's one thing i dont get: Whats sinh? I mean I know sine, i know cosine, i know arcus sine, but i never really understood what sinh is for...

    • @nathansauveur6704
      @nathansauveur6704 6 років тому

      Thought it was something about weird non eucludian geometry. But you should just google it if you want to learn more, tbh

    • @fiNitEarth
      @fiNitEarth 6 років тому

      @@nathansauveur6704 well, it's high level shit and real hard to grasp for me, tbh

    • @nathansauveur6704
      @nathansauveur6704 6 років тому

      @@fiNitEarth Try finding a maths teacher or smartboi and ask them to explain it. I usually learn something something new/hard better this way.
      And yeah, it's high level shit

    • @fiNitEarth
      @fiNitEarth 6 років тому

      @@nathansauveur6704 thought there could be some smartbois in this comment section :PP

    • @ssdd9911
      @ssdd9911 6 років тому

      arcus sine?

  • @harrietarabaessel2140
    @harrietarabaessel2140 2 роки тому

    This was very helpful thanks soo much

  • @moskthinks9801
    @moskthinks9801 6 років тому +3

    Planning on the "two ways" series?

    • @blackpenredpen
      @blackpenredpen  6 років тому

      I have been doing that! : )

    • @moskthinks9801
      @moskthinks9801 6 років тому

      @@blackpenredpen yeah as an obs. from the two vids

  • @arequina
    @arequina 6 років тому +7

    need more different math shirts. already bought the shirt your wearing.

    • @blackpenredpen
      @blackpenredpen  6 років тому +2

      arequina thank you for supporting my channel. More shirts are on the way. : )

  • @blue_blue-1
    @blue_blue-1 6 років тому

    @blackpenredpen
    Why don‘t you help us out in the discussion about „rad“ in the related rates - triangle - video?
    Thank you!

  • @nothanks550
    @nothanks550 5 років тому

    Man, I love you!

  • @nothanks550
    @nothanks550 5 років тому

    I wish I could like this video more than once

  • @shakeel344
    @shakeel344 9 місяців тому

    Thank you so much 👍

  • @manuelodabashian
    @manuelodabashian 6 років тому +1

    Explain the pronunciation of the hyperbolic functions. They seem to have changed

    • @blackpenredpen
      @blackpenredpen  6 років тому

      Hmmm, in that case, I would just say hyperbolic sine, cosine, etc.

  • @pfscpublic
    @pfscpublic 6 років тому

    Could this be solved using a complex number identity such as Sinh(x) = -iSin(ix) blackpenredpen?

  • @Goku17yen
    @Goku17yen 6 років тому +1

    Derivative of sinc(x)

  • @Pineapplecake
    @Pineapplecake 6 років тому

    I've ordered a shirt #YAY

  • @not_vinkami
    @not_vinkami 6 років тому

    The 3rd way:
    d/dx(sinh^-1(x))
    =d/dx(-i×sin^-1(ix))
    =-i×1/√(1-(ix)²)×i
    =1/√(1+x²)

  • @tenzin9327
    @tenzin9327 4 роки тому

    Can someone explain why does cosh(y) have to be greater than one ?

  • @visualvelocity6151
    @visualvelocity6151 6 років тому

    First way is easier, but i want to be able to do it both ways to master your class.

  • @joso5681
    @joso5681 6 років тому

    Great video, could you make one about the shape of the function f(x)=tan(n*arcos(x))?

  • @Yousef-wg2rw
    @Yousef-wg2rw Рік тому

    second way better thank u

  • @shandrinwadenga5857
    @shandrinwadenga5857 3 роки тому

    Thank you sir.

  • @shamim_akash
    @shamim_akash 6 років тому +1

    That doaraemon music 😅

  • @ashleycadet1578
    @ashleycadet1578 4 роки тому

    So good

  • @holyshit922
    @holyshit922 6 років тому

    Use derivative of inverse function

  • @VaradMahashabde
    @VaradMahashabde 6 років тому +1

    cosh-er maths!!!!!!

  • @richikhaldar4846
    @richikhaldar4846 6 років тому

    #yay!! First. See u rockin that calc t-shirt

  • @tobyallington3061
    @tobyallington3061 4 роки тому

    thank you x

  • @maximilianmueller4707
    @maximilianmueller4707 6 років тому

    Implicit differentation

  •  6 років тому

    Why I shouldn't wear this on exams (other than that I've already have these kind of exams many years ago ...)? It's not cheating, I cannot see my back, it's the person's fault behind me because of cheating if (s)he wants to read the derivatives from my back :-P

  • @ssdd9911
    @ssdd9911 6 років тому

    make more of this please

    • @blackpenredpen
      @blackpenredpen  6 років тому

      s sdd I have them already. Check my playlists. : )

  • @manthansunilhalarnkar
    @manthansunilhalarnkar 6 років тому

    Both yah :)

  • @marwamohammed7849
    @marwamohammed7849 6 років тому

    pleas I need your help in some question how can I send it for you? Email or face book?

  • @mnavadeepreddy732
    @mnavadeepreddy732 Рік тому +1

    🤩😍😍😋🙂🙂💕💕💕💕💕

  • @Nick-hc2cs
    @Nick-hc2cs 6 років тому

    can you explain green's theorem? hehe

  • @divyansh3465
    @divyansh3465 4 роки тому

    second way

  • @rahjived.lauayan6503
    @rahjived.lauayan6503 5 років тому

    blackpenredpenbluepen