Find The Maximum Area of Rectangle in a Semicircle | Largest Rectangle in a Semicircle | 2 Methods

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 24

  • @soli9mana-soli4953
    @soli9mana-soli4953 3 дні тому +4

    I solved considering a quarter circle instead of a semicircle, and in that case you can easily see that the max rectangle (that is the half of the rectangle you are looking for) is when sinx*cosx is max. That means when the product between two numbers is max. And we know that the product between two numbers is max when they are equal. This means x =45 degree. CB=OB=4*sqrt2/2=2sqrt2
    Then AB=2*2sqrt2=4sqrt2
    Area=2sqrt2*4sqrt2=16

  • @kateknowles8055
    @kateknowles8055 3 дні тому +1

    Thank you for your problem and solution.
    The area of the rectangle:
    It is less than 8pi.
    If M is the midpoint of AB , AM.AM = AB.AB /4 AM.AM = (a)(2r-a) ( products of intersecting chords)
    r = radius = 4 a is the distance of M below the semi-circumference a = 4- BC
    AM.AM = (4-BC)( 8 - (4 - BC)) A^2 = AB.BC. AB.BC where A is the area to be maximal.
    Substituting for AB= 2AM and AB.AB is 4AM.AM which is 4(4 - BC)(4+BC) A^2 = BC.BC( 4)(16-BC.BC)
    {When BC=4 AB would be 0 } Were BC = 3 A^2 would be 9.4.7 = 21 x 12 = 252 Were BC=2 A^2 would be 4.4.12 = 16 x 12 = 192
    This square of the area will maximise when BC = Root (8) to be 256
    AM.AM would be 16-8 and AB.AB would be 32. Validate by slight increases or decreases. Or prove by derived function equals zero at a stationary point.
    A^2 = 8 .4.8 Area of ABCD = 16 = (2 root (8) ) by (root (8))
    ANSWER = 16

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 3 дні тому +5

    Let x be the length of the rectangle, then the width of the rectangle is equal to (√(64-x²))/2 and its area is equal to x*(√(64-x²))/2. This area is maximum if x²(64-x²) is maximum, and the function f(x)=-x⁴+64x² is maximum for x=4√2, and thus the maximum area of the rectangle is equal to 4√2*√(64-(4√2)²)/2=16.

  • @santiagoarosam430
    @santiagoarosam430 3 дні тому +2

    El rectángulo más grande que puede inscribirse en un círculo de diámetro =8, es el cuadrado cuya diagonal es ese mismo diámetro ---> Máxima área ABCD =(8²/2)/2 =16 u².
    Gracias y saludos

  • @raghvendrasingh1289
    @raghvendrasingh1289 3 дні тому +1

    👍
    Let DC = x , BC = y
    then using Pythagoras theorem
    x^2/4+y^2 = 16
    max value of (x^2/4)(y^2) = 8× 8
    max value of xy/2 us 8
    max value of xy is 16
    hence max area = 16 square units

  • @spdas5942
    @spdas5942 3 дні тому +1

    a*Sqrt(2)=8=> a=4*sqrt(2)=> Area of the rectangle = 0.5*(4*sqrt2)^2=16 sqr unit. ❤

  • @oscarcastaneda5310
    @oscarcastaneda5310 3 дні тому +1

    My hat goes off to you for such elegant solutions !
    I particularly enjoyed the use of the AM-GM inequality : )
    As for me, I used the derivative to determine the dimensions that result in the greatest area but I find the geometric route more enjoyable.

  • @五十嵐特許事務所
    @五十嵐特許事務所 2 дні тому +1

    If ∠BOC=θ, then BC=4sinθ, DC=2×4cosθ=8cosθ. ∴[ABCD] =BC×DC=32sinθcosθ=16sin2θ. Since 0

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 дні тому +1

    360°ABCD/180°=2ABCD (ABCD ➖ 2ABCD+2).

  • @marioalb9726
    @marioalb9726 3 дні тому +3

    R = 4 cm
    A = R² = 16 cm² ( Solved √ )
    Maximum area is when ratio of rectangle sides is b=2h

  • @sisasanambur
    @sisasanambur 2 дні тому +1

    x^2 + y^2 = 16, L= 2x . y = 2x (16-x^2)^1/2, diff. this equeton give x=V8, hence Lmax= 16

  • @holyshit922
    @holyshit922 2 дні тому +1

    I used calculus
    OA = 4, radius
    (4-x)^2+y^2=4^2 , from Pythagorean theorem
    y = sqrt(8x - x^2)
    A(x) = 2*(4-x)*sqrt(8x-x^2)
    A'(x) = -2sqrt(8x-x^2)+2*(4-x)(8-2x)/(2sqrt(8x-x^2))
    A'(x) = -2sqrt(8x-x^2)+(4-x)(8-2x)/sqrt(8x-x^2)
    A'(x)=(2x^2-16x +2x^2-16x+32)/sqrt(8x-x^2)
    A'(x) = 4*(x^2-8x+8)/sqrt(8x-x^2)
    x^2-8x+8 = 0
    (x-4-2sqrt(2))(x-4+2sqrt(2))
    x = 4-2sqrt(2)
    2*2sqrt(2)*sqrt(16-(4-x)^2)
    2*2sqrt(2)*sqrt(8)=4sqrt(2)*2*sqrt(2)=16

  • @pwmiles56
    @pwmiles56 3 дні тому +2

    (a/2)^2 + b^2 = 4^2
    (a/2 - b)^2 + ab = 16
    ab = 16 - (a/2 - b)^2
    Area = ab, maximised by a/2=b
    Max area = 16

  • @伸-x3s
    @伸-x3s 3 дні тому +1

    AD=y、OD=xとすると、
    相加>=相乗より、xyが最大
    になるのは、x=yの時であるから、x=y=2√2であり、その時の面積は、2√2×2√2×2=16

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 дні тому +2

    h=BC,A=2h√(16-h^2)...A'=0 per h=√8..Amax=2√8√8=16

  • @稲次将人
    @稲次将人 День тому

    長方形の縦をxとおくと、
    横は2√(16-x^2)
    ABCD=2x(16-x^2)^(1/2)=f(x)とおいて微分すると、
    f'(x)=2(16-x^2)^(1/2)+2x(1/2)(16-x^2)^(-1/2)(-2x)=0となるxの値は、
    2√(16-x^2)-2x^2/√(16-x^2)=0
    16-x^2-x^2=0
    8=x^2
    x=2√2
    ABCD=f(2√2)=2√2×4√2=16

  • @harikatragadda
    @harikatragadda 3 дні тому +4

    If the rectangle height is a and base b, then a² = 16-b²/4
    A = ab
    A² = a²b²= (16-b²/4)b²
    = 16²-(b²/2 -16)²
    A² is maximum when b²/2 - 16 = 0
    Hence Max A² =16²
    Max A = 16

  • @wasimahmad-t6c
    @wasimahmad-t6c 3 дні тому +1

    8×8÷4=16

  • @nenetstree914
    @nenetstree914 3 дні тому +2

    16

  • @Purbasakteee
    @Purbasakteee 2 дні тому

    rectangle height = r.sin θ
    rectangle widrh = 2.r.cos θ
    rectangle area = A(θ) = 2.r².sin θ. cos θ
    area will be maximum on θ in which dA(θ)/dθ = 0
    dA(θ)/dθ = 2.r².(cos²θ - sin²θ)
    (cos²θ - sin²θ) have to be 0
    therefore θ = 45° or π/4
    back to
    rectangle area = A(θ) = 2.r².sin θ. cos θ
    rectangle area = A(θ) = 2.4².(½.2½).(½.2½)
    = 16
    yay.
    it's kinda weird i missed this part of mathematics from my teenhood

  • @JoanRosSendra
    @JoanRosSendra Годину тому

    No entendí la desigualdad entre AM y GM...😢
    ¿Qué es cada uno de esos términos?
    Yo resolví mediante el ángulo BOC=X
    Sen X=b/4;
    b=4 Sen X
    Cos X=(a/2)/4;
    a=8 Cos X
    Área del rectángulo =
    4 Sen X . 8 Cos X =
    AREA=32 Sen X . Cos X
    Entonces resolví con la calculadora (probando algunos ángulos al azar) 😅😢 y rápidamente vi que se creaba una curva de ángulos que culminaba en el ángulo de 45°, con la mayor área de todas las muestras de calculadora.
    Reconozco que no es un buen método matemático 😢😢😢
    Pero no encontraba la solución por un método más ortodoxo.
    Por eso mi pregunta de la desigualdad.
    Gracias y saludos

    • @MathBooster
      @MathBooster  40 хвилин тому

      You can search AM-GM inequality on UA-cam or google to learn the basics.

    • @JoanRosSendra
      @JoanRosSendra 36 хвилин тому

      Thanks...