Hermite Polynomial Recurrence Relations

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 11

  • @moekouma465
    @moekouma465 3 роки тому +1

    I’m Sorry Sir but how did u do that 6:15 part
    I wanna know more ab this one could u explain more

    • @MayankGoel447
      @MayankGoel447 3 місяці тому

      When k=0, there is no derivative thus the x term remains the same. When k =1 , nCk = n and dx/dx =1

  • @paulbuchinger4585
    @paulbuchinger4585 4 роки тому +5

    very good video, but the index of the general leibniz rule does not go to infinity but to n :)
    *** oh sorry i was too fast, you corrected it later on, very nice video

    • @physicsandmathlectures3289
      @physicsandmathlectures3289  4 роки тому

      A good catch nonetheless! Technically it's not wrong if it goes to infinity because the binomial coefficient (n choose k) is equal to 0 for k > n (for k and n both positive integers), but that makes things look a big more complicated in this case. Plus no need to add 0 to the sum.

  • @ventrue1999
    @ventrue1999 4 роки тому

    Hello, at 8:00 shouldn't it be (-1)^(n+1) and not n-1 ?

    • @physicsandmathlectures3289
      @physicsandmathlectures3289  4 роки тому +2

      Thank you for the question! Those are the same since (-1)^(n-1) = (-1)^2 (-1)^(n-1) = (-1)^(n+1) .

    • @ventrue1999
      @ventrue1999 4 роки тому +2

      @@physicsandmathlectures3289 I gave it more thought and I came to a similar conclusion, perfect for showing the recurrence relations. Thank you!

  • @meatpie6399
    @meatpie6399 4 роки тому +1

    Thanks

  • @incrediboyable
    @incrediboyable 4 роки тому

    I liked your polynomial series. Spline polynomials could also be added to this.

  • @PabloWitkowicz
    @PabloWitkowicz 2 роки тому

    I love you