A Very Nice Math Olympiad Geometry Challenge | 2 Different Methods

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 21

  • @soli9mana-soli4953
    @soli9mana-soli4953 8 місяців тому +2

    In the first method once found AD, AE and AC as Booster, I've found X with:
    AE² = AD*AC - DE*CE
    (4√ 7)² = 6√ 2* 3/2√ 2x - 4*x
    112 = 18x - 4x
    x = 8

  • @SuchaiSuteparuk
    @SuchaiSuteparuk 8 місяців тому

    My corrected solution:
    My solution uses more geometry, less algebra (no quadratic equation), and no trigonometry.
    Construction
    Extend CB toward B to F so BF = BD = 3
    Draw AF
    Solution
    Triangle ABF is congruent to ABD. So AF = AD, angle BAF = BAD = theta.
    Use the property of an angle bisector shown on 1:50.
    AE is the angle bisector of the triangle DAC. --> AC/AD = CE/DE = x/4
    AD is the angle bisector of the triangle FAC. --> AC/AF = CD/FD = (x+4)/6
    But AD = AF;
    so x/4 = (x+4)/6 --> x = 8

  • @JadSkeif-jh3dr
    @JadSkeif-jh3dr 16 днів тому

    We can also use Stewart's Theorm

  • @jpharnad
    @jpharnad 7 місяців тому +1

    The second method is fine, but the first one is incomplete, since it was not demonstrated why AB/AE = BD/ED. The previous step did not correspond to the case of a right triangle with an acute angle bisector, but rather an isosceles triangle. It is easy to prove this missing step, however, by adding a construction line joining D to a point B' on the line AE that is at distance from A equal to the side AB. This gives a triangle DB'E that is similar to ABE, from which the equality AB/AE = BD/ED follows.

  • @marcgriselhubert3915
    @marcgriselhubert3915 8 місяців тому

    I note x = tan(theta), y = tan(2.theta) and z = tan(3.theta).
    x = BD/AB =3/AB and y = BE/AB = 7/AB, so y = (7/3).x Or y = (2.x)/(1 -x^2), so we have: (7/3).x = (2.x)/(1 -x^2), or 7/3 = 2/(1 -x^2) as x 0
    Then 1 - x^2 = 6/7 , x^2 = 1/7 and x = 1/sqrt(7) as x>0. Now we also have 7 = (7/3).x = 7/(3.sqrt(7))
    Now z = (x +y)/ (1 -x.y) = (10/3.sqrt(7))/(1 -(1/3)) = 5/sqrt(7). So we have z = 5.x = BC/AB, so BC = 5.BD = 5.3 = 15, and finally EC = 15 - 7 = 8.

  • @SuchaiSuteparuk
    @SuchaiSuteparuk 8 місяців тому

    My solution uses more geometry, less algebra (no quadratic equation), and no trigonometry.
    Construction
    Extend CB toward B to F so BF = BD = 3
    Draw AF
    Solution
    triangle ABF is congruent to ABE. So AF = AE, angle BAF = BAD = theta
    Use the property of an angle bisector shown on 1:50.
    AE is the angle bisector of the triangle DAC. --> AC/AD = CE/DE = x/4
    AB is the angle bisector of the triangle FAC. --> AC/AF = CD/FD = (x+4)/6
    But AD = AF;
    so x/4 = (x+4)/6 --> x = 8

    • @SuchaiSuteparuk
      @SuchaiSuteparuk 8 місяців тому

      correction
      Triangle ABF is congruent to ABD. So AF = AD, angle BAF = BAD = theta.

    • @SuchaiSuteparuk
      @SuchaiSuteparuk 8 місяців тому

      I have corrected my typo mistakes in another comment.

  • @robertlynch7520
    @robertlynch7520 8 місяців тому

    I mean, if you're going to use the trigonometric solution, then … why not use the trigonometric solution to figure out the answer without ALL the messy algebra?
    [1.1]  tan θ = 3 / 𝒂
    [1.2]  tan 2θ = (3 ⊕ 4 → 7) / 𝒂
    Identities…
    [2.1]  tan 2θ = (2 tan θ) / (1 - tan² θ)
    Substitute in left side of [1.2] with [2.1]
    [3.1]  (2 × 3/𝒂) / (1 - 9/𝒂²) = 7/𝒂 … some algebra gives
    [3.2]  (6 / ((𝒂² - 9) / 𝒂)) = 7/𝒂 … move stuff around
    [3.3]  7𝒂² - 63 = 6𝒂² … move more bits
    [3.4]  𝒂² = 63
    [3.5]  𝒂 = 3√7
    [3.6]  𝒂 = 7.9373…
    We can now use that to find (θ) with
    [4.1]  tan θ = 3 / 𝒂
    [4.2]  arctan( tan θ ) = arctan( 3 ÷ 7.9379… )
    [4.3]  θ = 20.705…°
    Cool, now just multiply θ by 3, and take tangent, and multiply by 𝒂, the adjacent:
    [5.1]  𝒂 tan 3θ = full base
    [5.2]  7.9373 tan 62.115…° = full base
    [5.3]  full base = 15
    And then just subtract off the 3 and 4 already given
    [6.1]  𝒙 = 15 - (3 ⊕ 4)
    [6.2]  𝒙 = 8
    That would be the desired (and apparently also solved) solution.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 6 місяців тому

    Triangle ABD is a 30-60-90 triangle. AB=3√3

    • @CrazyGaming-ig6qq
      @CrazyGaming-ig6qq 4 місяці тому

      Don't you mean ABC? It wouldn't be possible for ABD to be 30-60-90.

  • @quigonkenny
    @quigonkenny 8 місяців тому

    Let y be the length of AB.
    tan θ = 3/y
    y = 3/tan θ
    tan 2θ = 7/y
    y = 7/tan 2θ
    3/tan θ = 7/tan 2θ
    tan 2θ/tan θ = 7/3
    2tan θ/(tan θ)(1-tan² θ) = 7/3
    2/(1-tan² θ) = 7/3
    1 - tan² θ = 6/7
    tan² θ = 1 - 6/7 = 1/7
    tan θ = √(1/7) = 1/√7
    θ = arctan(1/√7) ≈ 20.705°
    3/tan θ = (x+7)/tan 3θ
    x+7 = 3tan 3θ/tan θ
    x = 3(5/√7)/(1/√7) - 7 = 15 - 7
    x = 8

  • @User-jr7vf
    @User-jr7vf 8 місяців тому

    1:55 what is the name of the theorem that let's us arrive at those ratios?

  • @EhsanZia-Academi
    @EhsanZia-Academi 8 місяців тому

    Thank you for this video. Could you please give me a reference for these Olympiad questions?

  • @alokranjan4149
    @alokranjan4149 8 місяців тому

    Very beautiful question. Can be easily solved by using trigonometry. But by 1st method , one without knowing trigonometry can also the problem by using Pythagoras theorem & simple geometry. That's the beauty of the problem ❤️❤️

  • @sanjivshukla9362
    @sanjivshukla9362 8 місяців тому +1

    Please take jee advance questions

  • @SGuerra
    @SGuerra 2 місяці тому

    A questão é muito bonita. Eu a fiz de duas maneiras distintas, sendo uma delas igual à sua primeira maneira. Parabéns pela escolha! Brasil Setembro 2024. The question is very beautiful. I did it in two different ways, one of which is the same as your first way. Congratulations on your choice! Brazil September 2024.

  • @giuseppemalaguti435
    @giuseppemalaguti435 8 місяців тому

    Dai teoremi dei seni risultano due equazioni...((7+x)/3)*sinθ/sin3θ=cosθ/cos3θ ..4/x=cos3θ/cosθ..dalle due equazioni e usando le formule sin3x e cos3x...risulta facilmente x=8. .very interesting

  • @manojkantsamal4945
    @manojkantsamal4945 8 місяців тому

    X=8, may be