Mask Region based Convolution Neural Networks - EXPLAINED!

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 104

  • @jalbouta746
    @jalbouta746 2 роки тому +6

    You explained it really well. Big thank you. But in the recent modification of the the paper, the author changed the FCN to FPN (Feature Pyramid Network).

  • @youssefmaghrebi6963
    @youssefmaghrebi6963 2 роки тому

    you explained what all the others didn't. Thanks a lot now all the dots are connected in my mind.

  • @umeshbhati9540
    @umeshbhati9540 3 роки тому +1

    You explained in a very simpler way. A big thank you from my side. All the best for your upcoming codeEmporium.

  • @darasingh8937
    @darasingh8937 3 роки тому

    You made this video in 2018! Great job in being so update!

  • @kim_monica89
    @kim_monica89 4 роки тому +1

    what a great video!!!
    great exploration
    just started learn a computer vision, for me this video is the most understandable

  • @inquisitiverakib5844
    @inquisitiverakib5844 2 роки тому

    very much lucid explanation. I would request you to make a detailed video on the subtopic discussed here ROI,ROI pooling and ROI align

    • @CodeEmporium
      @CodeEmporium  2 роки тому +1

      Thanks a ton the the compliments. Maybe a future video? I need to motivate it more generally if I’m going to make a video on it. So possibly:)

    • @inquisitiverakib5844
      @inquisitiverakib5844 2 роки тому

      @@CodeEmporium
      Yes, requesting you to nailed it 😅.

  • @rongzhou6498
    @rongzhou6498 5 років тому +1

    Nice explanation especially on the ROI align part! I understood based on your explanation!!! Thanks!

  • @kabuda1949
    @kabuda1949 2 роки тому

    Thanks Man. You are a beast in explaining, everything is perfect.

  • @yiweijia6922
    @yiweijia6922 3 роки тому

    Thanks for your explanation! It saves me from the complicated explanations of my lecture.

  • @fahnub
    @fahnub 2 роки тому

    bro you're doing such a great job. your videos are so helpful.

  • @hiyamghannam1939
    @hiyamghannam1939 4 роки тому

    Thank you so much. Very nice Introduction and Explanation. I understood a lot even though I lack a proper background in computer vision!!

  • @pavithrae874
    @pavithrae874 Рік тому

    Thank you! Simple and clean thought process :)

  • @youtubecommenter5122
    @youtubecommenter5122 4 роки тому

    This channel is so legit good omg

  • @lail3344
    @lail3344 6 років тому

    Good summary and ROI ALIGN description.

  • @brianthomas9148
    @brianthomas9148 Рік тому

    Thank you for this, really good explanation and straight to the point

  •  4 роки тому

    wow boy, this is a REALLY GOOD video. Thanks!

  • @ajajalam6690
    @ajajalam6690 4 роки тому

    your video is very helpful and to the point.thank you very much

  • @011azr
    @011azr 6 років тому +11

    This is great! Please keep on making stuff like this xD.

    • @CodeEmporium
      @CodeEmporium  6 років тому +1

      Thanks. Will do. Working on another video on various Convolution Neural Net Architectures. I'll have that up in a few days. It's going to be a new kind of video, but I'd consider it "stuff like this". So stick around :)

  • @DanielWeikert
    @DanielWeikert 5 років тому +4

    Thank you great work! Is there an easy (beginner friendly) explanation how ROI align works?

  • @xc5838
    @xc5838 6 років тому

    Subbed this is a really really well made easy to understand video. Hope to see more from you in the future!

  • @MansaKundrapu
    @MansaKundrapu 4 роки тому

    Great explanation 👍🏻👍🏻

  • @mihirichathurikaamarasingh7396
    @mihirichathurikaamarasingh7396 5 років тому

    Very detailed video. Thank you very much.

  • @prashanthnvs3719
    @prashanthnvs3719 4 роки тому

    Great content and able to understand the concept in a very little time

  • @leelavathigarigipati3887
    @leelavathigarigipati3887 4 роки тому

    Great video! Thank you

  • @rahuldeora5815
    @rahuldeora5815 6 років тому +1

    At 3:48, how exactly does max pool rotational invariance?? I understand translational invariance but a rotation would make different features activated

  • @amitprasad26
    @amitprasad26 4 роки тому

    Great explanation!

  • @yahya89able
    @yahya89able 4 роки тому

    Fantastic

  • @muhammadijaz7412
    @muhammadijaz7412 3 роки тому

    explain very easy! thanks

  • @sanjeetkumar7646
    @sanjeetkumar7646 6 років тому

    very nice explanation. Thanks

  • @shepearl8782
    @shepearl8782 2 роки тому

    Can this masked rcnn be used for overlapping leaves with diseases???

  • @tensorfreitas
    @tensorfreitas 6 років тому

    Great Explanation, will follow your videos! Thanks for the share

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Thanks Tiago Freitas. Glad to know you are on board!

  • @shonischannel5405
    @shonischannel5405 2 роки тому

    Very well explained....can you please elaborate the mask branch with pixel values

  • @oliverdeane1003
    @oliverdeane1003 5 років тому +4

    Great explanation, thanks a lot! Can I ask what you mean when you say "when computing the mask, a loss of KM squared is incurred" at 6:44?

    • @youssefmaghrebi6963
      @youssefmaghrebi6963 2 роки тому

      the time complexity to compute all the masks for M*M region of interest for k possible classes is k*(M)²

  • @muhammadsarimmehdi
    @muhammadsarimmehdi 4 роки тому

    you should explain ROI align in more mathematical detail

  • @dev_morgana
    @dev_morgana 4 роки тому +2

    Your video is very good! Ask me a question, what would be the variables or conditions that I should consider when defining the variable STEPS_PER_EPOCH? Because I have a dataset with 50 images.

    • @DjKryx
      @DjKryx 2 роки тому +1

      Steps per epochs is the data size divided by batches, but in a rounded sense: if your batch size was 25, you would have 2 steps, but if your batch size was 24, you would have 3 steps, one for the two images that are leftovers after the batches have been created. And the thing is, there is no "rule of thumb" when deciding the batch size - it is more theoretical, because bigger batches imply that your weights and biases will be updated less often in one epoch so it is easier for your computer to do, but smaller batch sizes contribute to the precision of the model since they act like a regularization. I would go with 25 steps, so batch of two, in your case. I use 64 or 128 when working with millions of inputs. But the great thing is that your small dataset can be made better by using image augmentation - it is a built in tensorflow function for that, it will flip your images at random, rotate them, crop them, making your dataset seem larger than it is because, if you just use the flipping option, your one image can be seen as 4 different images in the input. It is important that, if you are doing segmentation, you apply the same augmentation on your "gold data", or the manually created masks and segmentations that are used as true output, one you compare your predictions to.

  • @HungPham-pg6oq
    @HungPham-pg6oq 5 років тому

    Tự động đánh dấu phân biệt sắp xếp vào những người và điểm thường lui tới vào kho

  • @shivamsisodiya9719
    @shivamsisodiya9719 6 років тому

    Just found another great tutorial on AI

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Why - thanks for the kind words ;)

  • @HungPham-pg6oq
    @HungPham-pg6oq 5 років тому

    Nhà thông minh của trí tuệ nhân tạo🙂

  • @AbhinavKumar-mm1ys
    @AbhinavKumar-mm1ys 5 років тому

    Nice, You made it look easy!

    • @CodeEmporium
      @CodeEmporium  5 років тому +1

      That's what I was going for. Research papers make everything complicated. Why not change that ;)

  • @s57452
    @s57452 5 років тому

    Awesome. Thanks!!

  • @manuthvann7560
    @manuthvann7560 2 роки тому

    that’s impressive 😍

  • @rajum9478
    @rajum9478 2 роки тому

    Thank you for explanation how do i save the model ?

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 6 років тому

    Excellent video!

    • @CodeEmporium
      @CodeEmporium  6 років тому

      James Thanks! So glad you liked it !

  • @shahriarshakirsumit9258
    @shahriarshakirsumit9258 6 років тому

    At first thank you very much for this video. Your videos quality are very good. I have started to watch your videos. Can you
    Using Mask RCNN we can detect human class, from that human class can we detect human face ? Then which algorithm will i use to detect face ? Can you please give me some suggestions. And is it possible to use same dataset for human detection along with face detection ??

  • @himanshusrihsk4302
    @himanshusrihsk4302 5 років тому

    Please make a video related to visual question answering

  • @gianlucabison9330
    @gianlucabison9330 2 роки тому

    Thanks :)

  • @theempire00
    @theempire00 6 років тому +3

    Thanks!!!

  • @undergrad4980
    @undergrad4980 3 роки тому

    Kyaaa bat hai

  • @zishanahmedshaikh
    @zishanahmedshaikh 6 років тому

    Gr8 work dude.Subscribed

  • @miftahbedru543
    @miftahbedru543 5 років тому

    If i want to use pretrained R-CNN for my own dataset to segment ( delineate) background from foerground , do i need to annotated or label my data ? The data i am using if person image ..

  • @MarkJay
    @MarkJay 6 років тому +2

    nice explanation. subbed

    • @CodeEmporium
      @CodeEmporium  6 років тому +2

      Thanks Mark! Been following your channel as well. Interesting stuff.

    • @MarkJay
      @MarkJay 6 років тому +3

      thanks! glad to see more channels making videos on the subject.

    • @jo-of-joey
      @jo-of-joey 6 років тому

      @@MarkJay Quality content creators!!!! Thank you guys!!!

  • @archonsouthpaw8690
    @archonsouthpaw8690 5 років тому

    preciate you stay blessed

  • @JohnDoe-vr4et
    @JohnDoe-vr4et 4 роки тому

    Isn't Object Detection + Semantic Segmentation = Panoptic Segmentation?

  • @VictorVelazquezEspitia
    @VictorVelazquezEspitia 4 роки тому

    great vid

  • @TummalaAnvesh
    @TummalaAnvesh 6 років тому

    Great video, keep rocking.

  • @ssagonline
    @ssagonline 3 роки тому

    hello can you also explain ho to plot graphs on mask rcnn demos

  • @darkside3ng
    @darkside3ng 6 років тому

    Nice work man!!!!

  • @邵帅-j3w
    @邵帅-j3w 6 років тому

    Great video

  • @mridulavijendran3062
    @mridulavijendran3062 4 роки тому

    What do you mean by pixel to pixel alignment?

  • @saytherighthing
    @saytherighthing 3 місяці тому

    but what is RoI align?

  • @RemiDav
    @RemiDav 5 років тому

    Thank you for taking the time and efforts to make this video.
    Side note: the creepy whispered "subscribe" at the end of the video has more of a repulsive effect and doesn't really make me want to subscribe (more like making me want to close the video as fast as possible). The positive energy given during the video would probably work a lot better if it were used to ask for subscription too.

  • @vannycrispino5566
    @vannycrispino5566 4 роки тому

    Does it apply to orbit semantic segmentation?

  • @dexterslab7750
    @dexterslab7750 6 років тому +1

    how to prepare own dataset for this I dont want to use cocodataset
    thank you

  • @handdddd2
    @handdddd2 6 років тому +1

    At 6:41 what is "analog is 2 a 1 versus rest approach"? Thank you very much.

    • @CodeEmporium
      @CodeEmporium  6 років тому +3

      I said "analogous to the One-Vs-Rest approach". It is a method of multiclass classification where we construct K (number of classes) binary classifiers. Each classifier determines whether a sample belongs to class k or not i.e. "one" Vs "the rest". I use it in this context to represent the construction of 3 binary masks (human, dog, cat). Thanks for watching Ha Nguyen! Stick around for more content :)

  • @HungPham-pg6oq
    @HungPham-pg6oq 5 років тому

    Đánh dấu địa điểm thường xuyên đến

  • @杨凡凡-o1m
    @杨凡凡-o1m 6 років тому

    I want to classify body movements. What are your ideas?

    • @2parinda
      @2parinda 6 років тому

      I'm also in a similar research, if you could found related details please let me know, my email is samitha156@gmail.com

  •  6 років тому

    Thanks! \m/

  • @xzxxie3167
    @xzxxie3167 3 роки тому

    非常好

  • @manuelignacioperezcarrasco6311
    @manuelignacioperezcarrasco6311 6 років тому

    Thank you for the explanation!! Can you share me your slides?

  • @henrydozie4520
    @henrydozie4520 6 років тому

    Can I please get the ppt?
    Amazing video

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Thanks! These aren't actually slides. I create these slides in my video editor directly.

    • @henrydozie4520
      @henrydozie4520 6 років тому

      Very well... thanks for the video.. I had some difficulty completely understanding how ROIalign eliminated mis-alignment.. I understand better now... Thanks

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Glad it helped! Really sorry I can't help you out with the slides though.

    • @henrydozie4520
      @henrydozie4520 6 років тому

      its ok.. thanks

  • @jerrinjoevarghese
    @jerrinjoevarghese 5 років тому

    Do u know where I can find a code for it

    • @thedrumify
      @thedrumify 4 роки тому

      link in the description

  • @HungPham-pg6oq
    @HungPham-pg6oq 5 років тому

    Thu thập thói quen hành vi người dùng hay đi qua chung một tuyến đường của trí tuệ nhân tạo

  • @piyushkumar-wg8cv
    @piyushkumar-wg8cv Рік тому +1

    You give very vague overview, no insights into how the training is done and all.

  • @alejandrocanelo3058
    @alejandrocanelo3058 4 роки тому

    I love your non indian accent

  • @SS-yb1qd
    @SS-yb1qd 2 роки тому

    Don't put ur scary face