m-Derived Filter Design Introduction | Network Analysis and Synthesis

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • Thanks for watching.

КОМЕНТАРІ •

  • @somnath3986
    @somnath3986 Рік тому +2

    This is the best lecture available on yt for this topic ☺️

  • @sanchayshrivas7749
    @sanchayshrivas7749 5 років тому +1

    Thank you Sir, your lectures are very helpful!

  • @hanupawandwivedi6613
    @hanupawandwivedi6613 4 роки тому +1

    So nice explanation 💕😊😊

  • @kyeswanth1204
    @kyeswanth1204 4 роки тому +1

    Really helpful sir

  • @GINKking
    @GINKking 3 роки тому

    After this, it seems you are my best friend.

  • @rahulvishwakarma5868
    @rahulvishwakarma5868 5 років тому +1

    derivation bhi kra dete sirji

  • @shivamkeshri6009
    @shivamkeshri6009 5 років тому

    Thanks
    But sir upload about high pass, band pass and band stop m derived filters as well in T and pie Section

  • @nani_kahani
    @nani_kahani 4 роки тому

    what if value of m is imaginary ?

    • @nipunharitash
      @nipunharitash  4 роки тому +1

      Designer does not want to design a real filter :)

    • @annonYk
      @annonYk Рік тому

      ​@nipunharitash good enough 😂

  • @bilalfarooqui1308
    @bilalfarooqui1308 Рік тому

    does anyone here have "network theory Smarajit ghosh"?

  • @nainamir5654
    @nainamir5654 5 років тому

    Why you're not using the characteristic impedance equations of low pass filter...when it is mentioned the equations you used are of high pass...🤔

    • @nikhilKumar-ui8bs
      @nikhilKumar-ui8bs 5 років тому

      Go and check ur notes the given eqn of L and C even characteristic impedance of low pass filter which is z = √(1+ z1/4z2)

    • @churchilljovs6861
      @churchilljovs6861 4 роки тому

      What is characteristic impedance of two port network.

    • @P3RYYY
      @P3RYYY 3 роки тому

      @@churchilljovs6861 the impedance/resistance offered by a network

    • @P3RYYY
      @P3RYYY 3 роки тому

      Characteristics impedance of t network is Z°=√(Z1^2/4+Z1Z2)