Time complexity: Best and Worst cases | Quick Sort | Appliedcourse

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 48

  • @frazebean5117
    @frazebean5117 9 місяців тому

    You're a legend man. I wish you all the best in your teaching journey cos you're gifted in it.

  • @bibhuprasadsubudhi1340
    @bibhuprasadsubudhi1340 Рік тому

    this ia what we students call a osm techer .love this session .thank you so much sir .

  • @nikhilgautam007
    @nikhilgautam007 3 роки тому +1

    Best video for understanding the time complexity of quick sort algorithm.😎👌👌

  • @rohithberavelli1941
    @rohithberavelli1941 5 років тому +3

    perfectly done by quick sort with your video.thanks for your explanation

  • @achronicstudent
    @achronicstudent 9 місяців тому

    I have question about 4:21 about drawing recursion tree. I always draw them like for each node, calculating the work done in this node. (as shown in Introduction to Algorithms 4th Leiserson Stein Rivest Cormen MIT Press p. 96) using this approach the recursion tree drawn should be n ---> cn, n-1--->c(n-1), n-2 ---> c(n-2), ... 1 ---> 1 but you draw it slightly different. I guess both approach gives the correct results for the example in p. 96 but i am not sure. Can you explain it a bit further?

  • @giantpanda504
    @giantpanda504 4 роки тому +1

    when you analyze the worst case for quicksort, x is the smallest element as you said. so the n1 from Partitioning should be all bigger than x. But you wrote the symptom of

    • @jerrykayson4145
      @jerrykayson4145 3 роки тому

      sorry to be offtopic but does someone know of a tool to log back into an instagram account??
      I was dumb forgot my account password. I would appreciate any tricks you can give me.

    • @rivergus501
      @rivergus501 3 роки тому

      @Jerry Kayson instablaster ;)

    • @jerrykayson4145
      @jerrykayson4145 3 роки тому

      @River Gus I really appreciate your reply. I found the site through google and im trying it out now.
      Looks like it's gonna take quite some time so I will get back to you later with my results.

    • @jerrykayson4145
      @jerrykayson4145 3 роки тому

      @River Gus It did the trick and I finally got access to my account again. I am so happy:D
      Thank you so much you saved my account :D

    • @rivergus501
      @rivergus501 3 роки тому

      @Jerry Kayson glad I could help =)

  • @prasannasasne81
    @prasannasasne81 4 роки тому +4

    at 11.46 you have mentioned the depth of the tree i.e log n to the base (10/9). can you please explain how you are calculating this depth?

    • @vivekmishra007
      @vivekmishra007 4 роки тому +2

      @Prasanna Sasne In the case when the array is divided into 1/10 and 9/10 of the total size we have to consider the part of the recursion tree with the maximum height, the tree one part is getting divided by 10 and another part by 10/9 so as 10/9

    • @exploringnaturalbeauty2102
      @exploringnaturalbeauty2102 4 роки тому

      @@vivekmishra007 Damn thanks bro , lucid explanation to the point , I want to be in contact with you , so do you have an email where I can mail you if I have any doubt or we can stick to this UA-cam comment section too..
      Depends on your comfort
      Thanks !

  • @debaratighatak2211
    @debaratighatak2211 3 роки тому +1

    What an amazing explanation sir! Thank you :)

  • @draaagoo7799
    @draaagoo7799 Рік тому

    Brilliant explanation!!

  • @picklerick3136
    @picklerick3136 5 років тому +3

    Thank you sir! Very inspiring!

    • @picklerick3136
      @picklerick3136 3 роки тому

      @Dayton Taylor nobody will give a damn because it’s a scam

    • @picklerick3136
      @picklerick3136 3 роки тому

      @Caden Jaiden yeah, and what a coincidence, you two both joined UA-cam one week ago

  • @shashipreetham2882
    @shashipreetham2882 3 роки тому

    Splendid Explanation!

  • @anurag9110
    @anurag9110 4 роки тому +1

    Nice explanation. Thanks

  • @sanashoukat477
    @sanashoukat477 2 роки тому

    make a video for heap sort.

  • @vaishnaviyogendradere17
    @vaishnaviyogendradere17 2 роки тому

    Great sir 👏👏

  • @durgeshbhakta8008
    @durgeshbhakta8008 4 роки тому +1

    Good explanation sir 👍

  • @naniscompass3173
    @naniscompass3173 2 роки тому

    What is the name for this teaching tool (colour pens)?

  • @hakan6449
    @hakan6449 Рік тому

    Good explanation

  • @sayantaniguha8519
    @sayantaniguha8519 3 роки тому

    So,
    Almost Best case is average case ?

  • @jagannathanvijaylakshmi5385
    @jagannathanvijaylakshmi5385 3 роки тому

    Can u tell me which software is being used? I mean how to write with mouse.. sir..are u using any digital pen or something?

  • @RahulGupta-rl8xd
    @RahulGupta-rl8xd 4 роки тому +1

    Thanks for help

  • @livingston8267
    @livingston8267 3 роки тому

    Amazing sir❤

  • @louerleseigneur4532
    @louerleseigneur4532 5 років тому

    Thank you very much sir ji

  • @nujranujranujra
    @nujranujranujra 5 років тому

    That was very helpful

  • @hirafarman8011
    @hirafarman8011 3 роки тому

    great

  • @gabrielpereiramendes3463
    @gabrielpereiramendes3463 4 роки тому

    #Excelent!

  • @uttamkarmakarece3534
    @uttamkarmakarece3534 3 роки тому

    ❤️❤️❤️

  • @aayushpagare9366
    @aayushpagare9366 4 роки тому +1

    🙇🏻‍♂️

  • @rafiqn2675
    @rafiqn2675 4 роки тому

    Bayya how to convert head recursion to tail recursion (tail call optimisation) please make video on it...

  • @Momo-hr2yd
    @Momo-hr2yd Рік тому

    Kosom the ziognist

  • @louerleseigneur4532
    @louerleseigneur4532 5 років тому

    brovo

  • @uberboy6986
    @uberboy6986 4 роки тому

    You cannot say that Quick Sort's time complexity is Big-oh of nlogn because it's not. Big-oh represent it's worst case and the worst case time complexity of quick sort is O(n²). To represent the average case you should use Big-Omega which is another symbol: Ω(n log n). Try not to explain difficult subjects to other people if you are not sure about it, it's hard to understand it and it gets even harder if many people say different things about it.

    • @redkai11
      @redkai11 4 роки тому +5

      That is common misconception. Big-o does not represent its worst case and big-omega does not represent average case. Big-o is just the upper bound and big-omega is just the lower bound of time complexity. For worst case, quicksort is actually theta(n^2) so it is completely valid to say quicksort's time complexity is O(n^2) when we are considering the worst case. For best case, quicksort's time complexity is theta(nlog(n)) so it is, again, completely valid to say o(nlog(n)) or big-omega(nlog(n)).

    • @uberboy6986
      @uberboy6986 4 роки тому

      @@redkai11 I'm talking about the part that he says that we can call it O(n log n) for the Quick Sort's time complexity ( 13:20 ).

    • @redkai11
      @redkai11 4 роки тому

      @@uberboy6986 the time complexity of theta(nlog(n)) implies O(nlog(n)) so he is actually right?

    • @uberboy6986
      @uberboy6986 4 роки тому

      @@redkai11 Theta(n log(n)) doesn't implies O(n log(n)). Quick Sort time complexity is O(n^2), Theta(n log(n)) and Omega(n log(n)). Google it.

    • @redkai11
      @redkai11 4 роки тому +4

      @@uberboy6986 at this point, I am convinced that you don't know what theta is and its relation to big-o and big-omega. maybe try digging into google more and you will find that anything of theta(f(x)) is also O(f(x)) and big-omega(f(x))