Type 1 improper integrals! calculus 2

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 78

  • @bprpcalculusbasics
    @bprpcalculusbasics  10 місяців тому +8

    Check out type 2 improper integrals: ua-cam.com/video/w46sjRIkV7Y/v-deo.html

  • @asianhero2.096
    @asianhero2.096 2 роки тому +81

    I really am blessed to be living in a time like this in terms of math learning. The trick you used for integration by parts was nuts and I would have never known it existed without this video. Great job.

    • @jcdenton3806
      @jcdenton3806 2 роки тому

      Same here!

    • @alterez6471
      @alterez6471 Рік тому

      Which one?? I'm new here

    • @sin0000
      @sin0000 6 місяців тому

      @@alterez6471 Probably talking about U substitution

  • @anshumanagrawal346
    @anshumanagrawal346 3 роки тому +8

    23:04 The divergence of this Integral is similar to the divergence of the Infinite GP with Common Ratio -1, if you look at the graph of cosine x, it's area till any positive number, starting from 0, ranges between -1 and 1. And, it keeps doing so in a fix pattern, never approaching anything

  • @nvapisces7011
    @nvapisces7011 3 роки тому +13

    The last question integral can be done by factoring x² and moving it to the numerator for the integral to become x^(-2)/(1-x^(-1)). Numerator is exactly the derivative of the denominator which gives you the result of the improper integral without solving the partial fractions

  • @Miki-dg1md
    @Miki-dg1md 7 місяців тому +1

    I am Ethiopian student i watch your videos
    I can gave good information .keep it up.
    Thank you so much

  • @dhavalsaxena9573
    @dhavalsaxena9573 3 роки тому +5

    I like how maths works a week ago id know what was going on in his videos and once i started my integration classes, a week later i am able to understand every single thing.

  • @haimanotsimegn3381
    @haimanotsimegn3381 2 роки тому +2

    You are a best teacher . This lecturer very important i appreciate .

  • @nilberthsouza
    @nilberthsouza 2 роки тому +11

    Very good. Your videos helped me improve a lot in Calculus. Thank you!

  • @anshumanagrawal346
    @anshumanagrawal346 3 роки тому +9

    17:09 Is still find it weird that the area under the graph of a purely algebraic function, has π in it

  • @neilgerace355
    @neilgerace355 3 роки тому +4

    3:43
    ::x sees a difficult integral::
    ::u comes along::
    u says, "I'm in my happy place ... I'm in my happy place .. I'm in my happy place..."

  • @shokirjonislomov32
    @shokirjonislomov32 Місяць тому

    Integral converges, if limit exists and finite
    Integral diverges, if limit not exists or exists, but tends to infinity.
    Question arrises. When integral is indeterminate, then? 23:04

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +94

    The happiest place for integration 🤓

  • @Elpsycongroo1130
    @Elpsycongroo1130 4 місяці тому +1

    at 12:21 , whats 'the list'?? :0

  • @atrabilis1376
    @atrabilis1376 2 роки тому +12

    Where can I find the list???

  • @DavideCosmaro
    @DavideCosmaro 11 місяців тому

    24:25= factoring x^2 would've left you with 1/(x^2 (1- 1/x)) and in if u= 1- 1/x then du= 1/x^2 and the whole integral becomes 1/u

  • @Taro-wd5uo
    @Taro-wd5uo Рік тому +4

    Im confused, he plugs in the values for u without replacing u back with its x term, doesn’t he have to change the integration bounds? Or does it not matter for infinite stuff

    • @thexoxob9448
      @thexoxob9448 5 місяців тому

      He changed the integration bounds. So the change back wasn't neccessary

  • @aaronwhite556
    @aaronwhite556 2 роки тому +1

    2:06 why is it the reciprocal? when i did it, i took the integral we usually take and got -1/2. so i got -1/(2sqrt(u)).

    • @Sammie-r7d
      @Sammie-r7d 8 місяців тому

      I got the same thing😢

    • @Hello-ue2xt
      @Hello-ue2xt 2 місяці тому

      @@Sammie-r7d integral of 1x^-3/2 is -2x^-1/2. -1/2 multiplied by its reciprocal is 1 (-1/2 * -2/1 = 1). subtract one from exponent -1/2, you get -3/2. So the derivative of -2x^-1/2 is 1x^-3/2 and therefore that (-2x^-1/2) is the integral we are looking for

  • @AmanyaOctavias
    @AmanyaOctavias Рік тому

    thank you very much sir u have enabled me to understand improper integrals

  • @dashie2580
    @dashie2580 Рік тому

    I'm confused... in 18:40 he said e to negative infinity equals zero. Then around 20:13 he was saying in x/e^infinity the e is infinity. If x and e are both infinity then yes, it equals zero. But if e is 0 then i think the lim equation is undefined. Can someone explain?

    • @matheusdossantos9252
      @matheusdossantos9252 Рік тому

      lim x -> -inf (x/e^-x)
      Well, lets subs that
      -inf/e^-(-inf)
      -inf/e^inf
      Which do you think the value "explode" faster?
      e^x >> x, Case similar to x/x^2 or 1/x
      This is an assessment without mathematical rigor but "is seen intuitively"

    • @Hello-ue2xt
      @Hello-ue2xt 2 місяці тому

      e^-infinity = 1/e^infinity, which you can think of as 1/infinity and it is a very small number close to 0.
      for the second case, x is approaching negative infinity [i will show it as (-)infinity].
      x/e^(-)infinity = x/e^(-)(-)infinity = x/e^infinity.
      If x is approaching (-)infinity, the denominator is approaching infinity faster than how x is approaching (-)infinity because the denominator is e^infinity. So it is 0.

  • @HtetKaungSan-eo6sq
    @HtetKaungSan-eo6sq Місяць тому +1

    what the hell is list , where can i find that ? help please

  • @iñigote
    @iñigote 2 роки тому +1

    Just a great explanation as usual

  • @237BrillantBABOKA
    @237BrillantBABOKA 2 роки тому +3

    Très bonne vidéo, j'ai beaucoup appris de celle ci. Cependant à 18:21, je pense que la réponse est 1-e au lieu de -1+e. Vérifiez svp, car lorsqu'on inverse les bornes d'une intégrale, On multiplie l'intégrale par le signe -, chose qui n'a pas été faite dans ce cas. Depuis le CAMEROUN

  • @syz911
    @syz911 2 роки тому +2

    The way the infinity is substituted as the limit is not correct. You have to make a definite limit and then take the limit to the infinity. If the limit diverges then you have to use Cauchy's Principal Value theorem. Just wanted to make sure everybody gets the correct way of doing it.

  • @matteocurtarelli1555
    @matteocurtarelli1555 Рік тому +2

    can someone explain to me what is the list? maybe in my country we use another therms for that

    • @therealbigfloppa5512
      @therealbigfloppa5512 Рік тому +3

      Leaving this here for someone if they also want to know. I think the list is just a list of common functions or examples that he uses a lot in his problems. Without the list you can use L Hopitals rule and differentiate top and bottom of fraction and get (1/x)/1 which is just 1/x and the limit of that to infinity is just 0.

  • @fedibaklouti3239
    @fedibaklouti3239 4 місяці тому +1

    the first example id false ,you have to Either change u back to x+1 ,or to make it equals 2 in the left side

  • @Emine-ri7ex
    @Emine-ri7ex Рік тому

    example 4 why don't you substitute 1 and infinity in lnx as the pervious example

  • @prudencekamara1707
    @prudencekamara1707 3 роки тому +3

    I hate it when he smiles go fo difficult things 😅😂😂😂
    Anyway he's a genius ❤️

  • @spencerrosenlund2779
    @spencerrosenlund2779 Рік тому

    Super helpful thank you so much!!!

  • @ureal887
    @ureal887 Рік тому

    10:42 but isn't it negative in the law vu-∫vdu

    • @carultch
      @carultch Рік тому

      The negative sign from the original IBP formula, is accounted for in the signs column of the IBP table. The signs column starts on +, and alternates.

  • @عليماهر-خ3ب8ك
    @عليماهر-خ3ب8ك 4 місяці тому

    very good 😊

  • @DragoniteGaming
    @DragoniteGaming 2 роки тому

    Man is the goat❤

  • @MicklanOfficial
    @MicklanOfficial 10 місяців тому

    This video has made me a better person 😭💔🙌🙌🙌

  • @otsilediale5399
    @otsilediale5399 Рік тому +1

    isn't infinity over infinity an indeterminate form?

    • @carultch
      @carultch Рік тому

      Yes. Infinity over infinity is an indeterminate form.

  • @hansinosa6838
    @hansinosa6838 10 місяців тому +1

    Kuya, chinese ka po ba?

  • @EmpyreanLightASMR
    @EmpyreanLightASMR Рік тому

    Diverges to DNE is the name of my black metal doom goth project

  • @thomasblackwell9507
    @thomasblackwell9507 Рік тому

    What list?

  • @timothymuyanga1411
    @timothymuyanga1411 2 роки тому +1

    U got this guys😂😂😂

  • @machoslothman
    @machoslothman 11 місяців тому +1

    i love you math papa

  • @tkbt123
    @tkbt123 2 роки тому

    I LAB U TNX FOR THIS VIDEO

  • @najeebullah9658
    @najeebullah9658 Рік тому

    What about this integral
    1/sinx.

    • @williampeterson3498
      @williampeterson3498 Рік тому

      Trig sub 😅

    • @carultch
      @carultch Рік тому

      Given: integral 1/sin(x) dx
      Strategically multiply by sin(x)/sin(x):
      integral sin(x)/sin(x)^2 dx
      Use the fundamental Pythagorean identity to rewrite sin(x)^2:
      integral sin(x)/(1 - cos(x)^2) dx
      Let u = cos(x), thus du = -sin(x). Rewrite in the u-world:
      integral -1/(1 - u^2) du
      This we can recognize a relationship to the derivative of arctanh(u):
      d/du arctanh(u) = 1/(1 - u^2)
      Thus our integrand is d/du -arctanh(u)
      Result:
      -arctanh(u)
      Recall u = cos(x), add +C and we have our solution:
      integral 1/sin(x) dx = -arctanh(cos(x)) + C
      This integral diverges when its bounds approach asymptotes, such as x=0 and x=pi. If we integrate it a second time, it will produce improper integrals that converge, when bounds approach the original asymptotes. I'll leave that as an exercise to you.

  • @backyard282
    @backyard282 3 роки тому +7

    those are easy, on my test we'd get improper integrals that couldn't be integrated. instead we had to use different tests for convergence

  • @Stormnorman15
    @Stormnorman15 2 роки тому

    I dont think this method works when integral is 1 to infinity and is 1/(2x+1)^3 dx

  • @PayingPaingPhyo
    @PayingPaingPhyo Рік тому

    thank you sir

  • @dipp1511
    @dipp1511 2 роки тому +4

    dat beard tho

  • @sebbythelord567
    @sebbythelord567 Рік тому +1

    honestly i wish i had just ignored my professor and learnt from you from the start. he’s nice and very smart but wow he’s a bad teacher.

  • @michaelattafrimpong1140
    @michaelattafrimpong1140 Рік тому

    Superb😅

  • @nelsonberm3910
    @nelsonberm3910 Рік тому +1

    thank you daddy

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +1

    *By the list??!*

    • @Joca-by1pd
      @Joca-by1pd 3 роки тому +1

      He explained in this video: ua-cam.com/video/pGLOqedrk1s/v-deo.html

    • @user-wu8yq1rb9t
      @user-wu8yq1rb9t 3 роки тому +2

      @@Joca-by1pd
      It seems I missed that video!
      Thank you so much my friend

    • @thomastran5916
      @thomastran5916 2 роки тому

      yeah but you can simply do lhospital to do the limit

  • @keeeiif
    @keeeiif 2 місяці тому

    The u world... my happy place

  • @BrianKipturu-yc2kh
    @BrianKipturu-yc2kh 8 місяців тому +5

    Someone to like my comment🙏🙏🙏🙏

  • @Phi1618033
    @Phi1618033 Рік тому

    I wish he still had that beard.

  • @bunkebear510
    @bunkebear510 2 місяці тому

    1

  • @damjanmladenovic8890
    @damjanmladenovic8890 7 місяців тому

    i love you

  • @alexandriaarianadillonsrik4601
    @alexandriaarianadillonsrik4601 2 роки тому +1

    SHOW ME THE SECRET WEAPONS!!!!

  • @prudencekamara1707
    @prudencekamara1707 3 роки тому

    To do**