What are Tangent Spaces in Differential Geometry?

Поділитися
Вставка
  • Опубліковано 27 лис 2024

КОМЕНТАРІ • 42

  • @10011011110
    @10011011110 4 дні тому +6

    I honestly don't understand manifolds and only studied Physics and math until Differential Calculus in uni undergrad, but you guys made it super simple to understand this level of math at MY level. Now I feel like studying more of this after watching. Thanks to both of you!

    • @dibeos
      @dibeos  4 дні тому +1

      @10011011110 thanks for the nice words! Our goal is to slowly build up to more complex concepts (while starting from the most intuitive things) 😎 Glad it helped you!

    • @ValidatingUsername
      @ValidatingUsername 4 дні тому

      Hey, so the math might seem really odd and difficult but it’s really just the surface of shape in what ever dimension and that surface is literally all of the space any movement can take place in the “manifold calculus”

  • @plranisch9509
    @plranisch9509 5 днів тому +3

    Both of you are very brilliant people who can explain various issues very simply and this shows the depth of your insight. I am sure that your future works will bring various fields under the microscope and light!

    • @dibeos
      @dibeos  5 днів тому +1

      @@plranisch9509 thanks for the nice words!!! 😎👌🏻let us know what kind of content you’d like us to post about. Thanks for the encouragement again

  • @letstree1764
    @letstree1764 4 дні тому +3

    I really like Differential Geometry and think this is a really good explanation. Thank You!

    • @dibeos
      @dibeos  4 дні тому

      @@letstree1764 thank you so much for the encouragement!!!! 😎

  • @rathalas_enjoyer
    @rathalas_enjoyer 4 дні тому +3

    Very cool video! I was surprised when I saw how few subscribers you have, this is very well done! Keep up the good work, I hope you get big because you deserve it

    • @dibeos
      @dibeos  4 дні тому

      @@rathalas_enjoyer thank you so much!!! It really means a lot to us…

  • @dean532
    @dean532 4 дні тому +4

    Yup Tangent spaces literally put the “differential” (irrespective of d^n or position dependability) into geometry!
    Any of you studied (NCG) C* by any chance?

  • @adetoyesealbert2093
    @adetoyesealbert2093 4 дні тому +3

    Please make a video on fiber bundle 🙏

    • @alexgian9313
      @alexgian9313 День тому

      I'll second that!
      Very nice, clear video by the way, we need more like this, that explain at a really basic level. Well done, subbed.

  • @benjamingoldstein1111
    @benjamingoldstein1111 4 дні тому +2

    I'd be interested in a video zooming in on that leap to the chain rool. Somebody's gotta type it. So I do.
    Great job, guys! Nice visuals, great explanations!

    • @dibeos
      @dibeos  4 дні тому +1

      @@benjamingoldstein1111 thanks for letting us know, Benjamin!!! We will do it 😎👌🏻

    • @benjamingoldstein1111
      @benjamingoldstein1111 4 дні тому +1

      @@dibeos Cool!

  • @eliasmai6170
    @eliasmai6170 4 дні тому +1

    The set of tangent vectors to à point of a line/curve/surface, collectively it is a vector space.

  • @mouha003
    @mouha003 4 дні тому +1

    i'm exited to study this at college then saying that i know everything because of you, thank for both of you

    • @dibeos
      @dibeos  4 дні тому

      @@mouha003 thanks for the encouragement, and we really hope to be very useful!! Let us know how we can help 😎

  • @RayaneAoussar
    @RayaneAoussar 5 днів тому +2

    amazing video!! which software u use to make those animation please?
    I'm currently working on a math project for uni

    • @dibeos
      @dibeos  5 днів тому +2

      @@RayaneAoussar thanks!!! We just use keynotes

  • @joelmarques6793
    @joelmarques6793 4 дні тому +1

    Once again... Excellent work!

    • @dibeos
      @dibeos  4 дні тому

      @joelmarques6793 once again, excellent comment! thanks for encouraging us 😎👍🏻

  • @davidake8604
    @davidake8604 4 дні тому +1

    Awesome.
    I have a question. How did you do the images for the pdf file?

    • @dibeos
      @dibeos  4 дні тому +1

      @davidake8604 thanks! They’re just images from the video but in black and white

  • @whdaffer1
    @whdaffer1 20 годин тому +1

    I'm assuming that you defined the concept of a "chart" in some previous video?

    • @dibeos
      @dibeos  19 годин тому

      @whdaffer1 yesss. If you check our videos on manifolds you will find it there. But it’s basically a local coordinate system that “flattens” the manifold. Let us know how we can help 😎👍🏻

  • @romainmorleghem4132
    @romainmorleghem4132 3 години тому +1

    Can we say that a tangent vector is a functionnal ?

    • @dibeos
      @dibeos  2 години тому

      @@romainmorleghem4132 Yea, a tangent vector can be viewed as a functional in certain contexts, specifically when defined as a derivation. In diff geom, a tangent vector at a point can be thought of as a linear map (or functional as you said) acting on the space of smooth functions around the point

  • @VittoriaPasolini-ne4pm
    @VittoriaPasolini-ne4pm День тому +1

    I can't understand why I need to map into the Euclidean space the "manifold".. If the manifold represents the space itself, why the derivate are not defined, and I need of an Euclidean space?

    • @dibeos
      @dibeos  День тому

      @VittoriaPasolini-ne4pm Great question. The reason we map the manifold into a Euclidean space is a consequence of the very definition of the derivative.
      To compute a derivative, we need a way to measure changes along straight-line segments (think of the concept of a limit).
      On a manifold, which is curved and not necessarily embedded in a higher-dimensional Euclidean space, there is no guaranteed way to define straight-line segments or distances between two points in the general case. Without these, the derivative is not well-defined.
      By mapping the manifold to Euclidean space through a local chart (phi), we temporarily “flatten” a small region of the manifold. This allows us to use the familiar tools of calculus (limits, derivatives, etc.) in the Euclidean setting. In other words, now we have “straight-line segments” to measure distances between two points, which is necessary in the definition of the derivative (again, think of a limit). Let me know if this helps.

  • @connorcriss
    @connorcriss 4 дні тому +1

    Dude you are absolutely mogging in the thumbnail

    • @dibeos
      @dibeos  4 дні тому

      @@connorcriss thanks, I do my best to seduce people into math 😏

  • @PackMowin
    @PackMowin 2 дні тому +1

    Subbed

    • @dibeos
      @dibeos  2 дні тому

      @@PackMowin awesome! Thanks, Zach 😎

  • @plranisch9509
    @plranisch9509 5 днів тому +2

    Top!

  • @VittoriaPasolini-ne4pm
    @VittoriaPasolini-ne4pm День тому +1

    Anzi, lo chiedo in italiano... Perché bisogna fare il passaggio da quello spazio multidimensionale al classico tre dimensioni? Non sono "definite" le derivate e tutte le proprietà dell analisi, nel multispqzio?

    • @dibeos
      @dibeos  День тому

      @@VittoriaPasolini-ne4pm Ciao ancora Vittoria hahah allora, ti spiego qua quello che ho risposto nell’altro commento, ma lo faccio in italiano. Dimmi se ti torna adesso:
      Il motivo per cui mappiamo la varietà nello spazio euclideo è una conseguenza della definizione stessa della derivata.
      Per calcolare una derivata, abbiamo bisogno di un modo per misurare i cambiamenti lungo segmenti rettilinei (pensa al concetto di limite).
      Su una varietà, che è curva e non necessariamente incorporata in uno spazio euclideo di dimensione superiore, non esiste un modo intrinseco per definire segmenti rettilinei o distanze tra due punti nel caso generale. Senza questi, la derivata non è ben definita.
      Mappando la varietà nello spazio euclideo tramite un local chart (phi), "appiattiamo" temporaneamente una piccola regione della varietà. Ciò ci consente di utilizzare gli strumenti familiari del calcolo (limiti, derivate, ecc.) nell'impostazione euclidea. In altre parole, ora abbiamo "segmenti rettilinei" per misurare le distanze tra due punti, il che è necessario nella definizione della derivata (di nuovo, pensa al limite)

    • @VittoriaPasolini-ne4pm
      @VittoriaPasolini-ne4pm День тому +1

      @@dibeos grazie per la risposta esaustiva! Io ho fatto ingegneria, quindi la mia elasticità matematica è pari a 0! Credevo che tra le mille diavolerie dei matematici ci fosse anche il modo di definire le derivate in spazi curvi a milledimensioni! Non c'era un corso di differenziale che io ricordi, qualcosa per chi faceva cristalli o materiali, mi pare...l'approssimazione a livello "locale" di spazi curvi a piatti, lo vidi fare solo nel corso di relatività generale, che non seguivo, ovviamente, dove c'era tanta differenziale, tensori di curvatura, di Ricci, ecc ...roba che mi è subito uscita dalla testa, ovviamente!

    • @dibeos
      @dibeos  День тому

      @ certo, capisco perfettamente… allora, ciò che io e Sofia stiamo cercando di fare in questo canale è “aprire le porte” della matematica pura (e un po’ della fisica matematica) a persone che hanno già una certa base di matematica, ma vogliono approfondire ancora di più. Quindi, ogni volta che spieghiamo qualcosa nei nostri video che non sia abbastanza chiara, dimmi pure! Così possiamo migliorare le nostre spiegazioni nei prossimi video 😎👍🏻

    • @VittoriaPasolini-ne4pm
      @VittoriaPasolini-ne4pm 18 годин тому +1

      @@dibeos seguiro' sicuramente! Nei video in italiano, c'è un professore di Liceo, Arrigo Amadori, forse piu "pazzo" di voi, che fece 8 sabati pomeriggio a spiegare la geometria di riemann ai "muratori", rendendolo comprensibile per'altro...ve lo lascio qui...
      ua-cam.com/video/7mCHzvE2pJw/v-deo.html

  • @jammasound
    @jammasound 4 дні тому +1

    Cool